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Abstract

Social Network Analysis (SNA) is widely used by the intelligence community when

analyzing the relationships between individuals within groups of interest. Hence, any

tools that can be quantitatively shown to help improve the analyses are advantageous

for the intelligence community. To date, there have been no methods developed to

characterize a real world network as a Barabási-Albert network which is a type of

network with properties contained in many real-world networks. In this research, two

newly developed statistical tests using the degree distribution and the L-moments

of the degree distribution are proposed with application to classifying networks and

detecting degradation within a network. The feasibility of these tests is shown by

using the degree distribution for network and sub-network characterization of a se-

lected scale-free real world networks. Further, sensitivity to the level of network

degradation, via edge or node deletion, is examined with recommendation made as

to the detectable size of degradation achievable by the statistical tests. Finally, the

degree distribution of simulated Barabási-Albert networks is investigated and results

demonstrate that the theoretical distribution derived previously in the literature is

not applicable to all network sizes. These results provide a foundation on which a

statistically driven approach for network characterization can be built for network

classification and monitoring.
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A STATISTICAL APPROACH TO CHARACTERIZE AND DETECT

DEGRADATION WITHIN THE BARABÁSI-ALBERT NETWORK

I. Introduction

Social Network Analysis (SNA) is heavily used by the intelligence community when

analyzing the relationships between individuals or groups of interest [36]. Network

information is often captured in the form of relational data that can be represented

in the form of a graph. Thus, a main focus of SNA is to study both the relation-

ships among entities (or nodes in graphical context), and the implications that these

relationships may have on the collective and individual behavior resulting from the

structure of the network. For the intelligence community, the level of analysis often

involves network characterization, monitoring, and tracking; these are tasks which

are normally performed visually, requiring some level of intuition by the intelligence

analyst. Therefore, tools that can be quantitatively shown to improve SNA are ad-

vantageous for the intelligence community and others. For instance, a human study

performed by Blaha and others [10] showed that the most appropriate technique for

visualizing a network is dependent on various factors such as the network model and

the task that is to be performed on the given network. Thus, if a network of interest

can be characterized to the closest network model proxy, then the most appropriate

visualization technique that gives the best insight into the structure of the network

could be generated and the network could be studied in depth. For example, if a

social network of interest is characterized as a Barabási-Albert network, then visual-

izing the network as the latter may provide more insights to the analyst in studying

the given network. Additionally, for some applications, it is essential to monitor the
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network once it can be characterized. Being able to detect network degradation with

respect to its connectivity is necessary for monitoring the health of a network that

might experience constant subtle perturbations. Using a computer network example,

connections between servers may come down on occasions that are not due to an

attack but rather due to operational factors. Therefore, having a test that can differ-

entiate the two fairly quickly before any substantial damage is done to the network

is very useful.

A property possessed by various real world networks, such as the World Wide

Web, is the scale-free property [5]. This property was first described in networks

by de Solla Price [90], and has been shown to govern many social, physical, and

biological phenomena [6, 70, 16, 107]. The Barabási-Albert network exhibits the

scale-free property and is highly desired for its simplicity in terms of its mechanics and

parameters [24]. The Barabási-Albert model is driven by the concept of preferential

attachment in which new entities are more likely to form connections with those

that are already well connected within the network. Such preferential attachment

can be attributed to some social networks where popularity drives the connection

between entities. Despite both the scale-free property inherent in many real world

networks and the attempts to statistically test for preferential attachment within a

network [11], there have been no methods developed to characterize a real world

network as a Barabási-Albert network [24]. Therefore, a method of classifying or

characterizing a network as a Barabási-Albert network is novel because, although

there is a link connecting the Barabási-Albert network to a scale-free network, the

reverse connection has not been established. If such a connection can be made, it

is possible to characterize a real world network as a Barabási-Albert network. One

can then describe the real network’s dynamics through the concept of preferential

attachment. In addition, the real network can be easily simulated via the Barabási-
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Albert network for characterization and monitoring.

Research Objectives

This research is driven by two primary objectives which are 1) to create a test

of hypothesis in order to determine if a network or its sub-network can be repre-

sented as a Barabási-Albert network, and 2) to create a test of hypothesis in order

to detect subtle degradation in a Barabási-Albert network attributable to nodal or

edge deletion. For the first primary objective, properties of the degree distribution

in a Barabási-Albert network are used to form a test of hypothesis. Specifically, the

parameters associated with the Pareto distribution are utilized jointly in a test to

classify network as Barabási-Albert. This approach is based on the knowledge that

the Pareto distribution governs the degree distribution in the Barabási-Albert net-

work. A test of hypothesis based on the two statistics of the degree distribution is

then created and tested simultaneously after some inherent biases are corrected. For

the second primary objective, L-moments from the empirical degree distribution of

the Barabási-Albert network are used for creating a multivariate test of hypothesis.

Analysis on the sensitivity of the multivariate test to changes within the network

based on the proportion of edge and nodal deletion describes how quickly the test

detects degradation in the network. Here, degradation refers to the changes in the

structure of the network via its degree distribution and not the network performance

which is the definition used in some research fields.

Finally, a secondary objective is also investigated which seeks to provide an accu-

rate estimate of the parameters for the Pareto distribution and for which the hypoth-

esis tests in the primary objectives are constructed. Such estimates have not been

conclusively provided within the available literature, and for which the proper value

is necessary in order to form the correct hypotheses for the tests developed. There-
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fore, the parameters are estimated empirically through simulation of Barabási-Albert

networks of various sizes.

The objectives in this research provide a foundation on which a statistically driven

approach for network characterization can be built. Although the Barabási-Albert

graph is the model of interest for this research, the statistical tests developed can

be applied to other network models for network characterization and degradation

detection.

The remainder of this dissertation is outlined as follows. A review on some graph

theoretic concepts relating to graph degree, graph models, and graph similarity as

well as statistical concepts on the degree distribution of the Barabási-Albert network,

Power law and L-moments are first presented in Chapter II. Then, a novel method

of characterizing a network as Barabási-Albert model through a Union-Intersection

test of hypothesis using the Pareto distribution is presented in Chapter III. This is

followed by a new method of detecting degradation within a Barabási-Albert network

through a multivariate test of hypothesis based on the L-moments of the degree

distribution presented in Chapter IV. Parameter estimation for the degree distribution

of simulated Barabási-Albert networks are then presented in Chapter V in order to

supplement the theoretical derivation available in the literature. Lastly, a summary

of the results and a discussion on the impact of this research as well as possible areas

where it could be expanded are presented in Chapter VI.
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II. Background

2.1 Graphs and Networks Background

In this section, a literature review of some of the key areas pertaining to graphs and

networks will be outlined. This includes a literature review on graph theory and SNA

with a focus on network measures as well as network classification. If one can classify

a real world network to a particular network algorithm with known parameters, then

the knowledge gained from the algorithms can be used to describe the characteristics

of the real world network. A human study conducted by Blaha and others [10] has

shown that the most suitable network visualization techniques for various random

networks (which will be defined later) are dependent on the particular network and

the specific graph related question that is being asked. Therefore, suppose that an

analyst is tasked with examining a real world network with a set of specific inquiries

in mind. If said network can be classified as a specific Barabási-Albert network with

defined parameters, then the analyst can use the best visualization method for that

classification of network to visualize the real world network in order to give the best

insights into the particular inquiries at hand. The analyst can then apply existing

knowledge of the Barabási-Albert network to the real world network for analysis.

The concept of creating a method of characterizing a real world network with a well

defined network model is very useful.

In order for such a task to be achieved, there is a need for a way to properly

measure an empirical network so that it can be compared to the network model.

A high fidelity measure can also prove useful in monitoring a network temporally

and in keeping track of the evolution of said network. Wasserman and Faust [95]

suggests that variability of nodal degree is one measure of both graph activity and

centralization and further, that there is a relationship between density (the proportion
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of all possible edges within a graph) and the mean number of nodes in a graph. In this

section, graphs and network measures is defined and discussed. Note that a graph

is defined to be the mathematical representation of a network although these two

words will be used interchangeably.

2.1.1 Graph Theory Definitions.

The following notation is based upon network representation as graphs and is con-

structed from fundamentals in graph theory [97]. A graph G is defined as G = (V,E)

where V = {1, ..., N} is a set of nodes or vertices of size N and E ⊂ {V × V } is

a set of links or edges, ei,j = (i, j), connecting a pair of nodes. This research will

concentrate only on undirected simple graphs which implies that ei,j = ej,i and only

one instance of ei,j is in E. A graph is called a directed graph if ei,j 6= ej,i or a

multigraph if there are more than one instance of ei,j. Figure 1 gives an illustration

of two undirected simple graphs, the Circle graph G(V,E1) and the Watts-Strogatz

G(V,E2), both with a vertex set V = {1, 2, 3, 4, 5, 6} and either edge set E1 =

{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)} or edge set E2 = {(1, 2), (1, 6), (2, 3), (2, 4),

(3, 4), (5, 6)}, respectively. A ring lattice is defined as a graph with N nodes where

each node is connected to K neighbors with K
2

neighbors on each side. The graph

shown in Figure 2 is an example of a 4-regular ring lattice on 6 nodes. A graph can

also be represented as a matrix, A, called the adjacency matrix with elements

aij =

 1 if (i, j) ∈ E

0 otherwise.
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G(V,E1) G(V,E2)

Figure 1. Undirected simple graphs of size n = 6: left) Circle Graph G(V,E1) and right)
Watts-Strogatz G(V,E2)

Figure 2. 4-regular lattice on 6 nodes

Shown below are the equivalent matrix representations of the previously defined

graphs shown in Figure 1:

G(V,E1) =



0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0


G(V,E2) =



0 1 0 0 0 1

1 0 1 1 0 0

0 1 0 1 0 0

0 1 1 0 0 0

0 0 0 0 0 1

1 0 0 0 1 0


.

7



www.manaraa.com

Another way to represent a graph in matrix form is by using the incidence matrix,

I(G), that lists which edges are incident with which nodes, with the nodes being

indexed by the rows and the edges being index by the columns. Shown below are the

incident matrices of the previous two graph examples as shown in Figure 1:

I (G(V,E1)) =



e1,2 e2,3 e3,4 e4,5 e5,6 e6,1

v1 1 0 0 0 0 1

v2 1 1 0 0 0 0

v3 0 1 1 0 0 0

v4 0 0 1 1 0 0

v5 0 0 0 1 1 0

v6 0 0 0 0 1 1



I (G(V,E2)) =



e1,2 e1,6 e2,3 e2,4 e3,4 e5,6

v1 1 1 0 0 0 0

v2 1 0 1 1 0 0

v3 0 0 1 0 1 0

v4 0 0 0 1 1 0

v5 0 0 0 0 0 1

v6 0 1 0 0 0 1



.

2.1.2 Graph Measures.

Nodal degree, d(ni), is the number of direct edges connected from a given node to

other nodes. Nodal in-degree is the number of edges that are directed from other nodes

into a node. For directed graphs, the in-degree can be computed by summing the

corresponding column of the adjacency matrix A. Nodal out-degree is the number

of edges that are directed from a node to other nodes. This can be computed by

summing the corresponding row of the adjacency matrix A for a directed graph. The

in-degree and out-degree are the same for undirected graphs. Table 1 lists the degrees
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for the example graphs in Figure 1.

Table 1. Nodal degree for G(V,E1) and G(V,E2)

Node
Circle Graph

G(V,E1)
Watts-Strogatz

G(V,E2)

1 2 2

2 2 3

3 2 2

4 2 2

5 2 1

6 2 2

A nodal centrality index is defined as the value assigned to a node to indicate its

importance with respect to the whole graph. Define CA (ni) as the nodal centrality

index for node i denoted as ni and CA (n∗) as the largest nodal centrality index of a

network, then the general centralization index is

CA =

∑N
i=1 (CA (n∗)− CA (ni))

max
∑N

i=1 (CA (n∗)− CA (ni))

where max
∑n

i=1 (CA (n∗)− CA (ni)) is the maximum theoretical sum of degree dif-

ference for any network of size N [95, p.176]. The theoretical maximum is frequently

incalculable and is often replaced using the variance of the difference, V ar(V), where

V = {v1, . . . , vN} and vi = CA (n∗)−CA (ni) [95, p.177]. Group degree centralization

applies degree centrality, or simply degree, to the general centralization formula which

results in

CD =

∑N
i=1 (CD (n∗)− CD (ni))

(N − 1) (N − 2)
.

A standardized degree centrality C ′D (ni) = d(ni)
N−1

measures the proportion of nodes

9



www.manaraa.com

that are adjacent to node i. Degree variance

S2
D =

∑N
i=1

(
CD (ni)− C̄D

)2

N

is also a measure of centralization and is dependent on N although a normalized

variance is recommended by Snijders [89]. Wasserman and Faust state that, assuming

that all edges are unweighted, the centrality of a node will decrease as it moves farther

away from other nodes since there will be more edges linking that node to the other

nodes [95, p.184].

Closeness is a measure that is related to the centrality measures, and it is defined

as the inverse of the sum of pairwise distances between the nodes. Mathematically,

closeness is expressed as

CC (ni) =
1(∑N

j=1 d (ni, nj)
)

and standardized closeness is given by

C ′C (ni) = (N − 1)CC (ni) .

Group closeness as proposed by Freeman [25] is based on the standardized closeness

given by

CC =

∑N
i=1 (C ′C (n∗)− C ′C (ni))

(N − 2) (N − 1) / (2N − 3)
(1)

where C ′C (n∗) is the largest standardized closeness.

There are many properties of a graph that relate to closeness and centrality.

Freeman showed that the maximum possible value for the numerator of Equation (1) is

(N − 2) (N − 1) / (2N − 3). Group closeness and group degree centralization achieve

unity when one node is connected to all other nodes. Bolland proposes a measure that
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combines degree and closeness of nodes that is based on the number of paths that

originate with each node [12]. Wasserman and Faust note that an “effective index

[statistic] should reach its extremes in the cases of the circle graph (equal distances)

and the star graph (one minimally distant node)” [95, p.187]. Circle graphs have a

uniform distribution of centrality measures since all nodes have only degree two. In

this case, none of the nodes are more central than the others which results in a group

centrality of zero. On the other hand, star graphs have a single central node that is

connected to the other nodes while those nodes are exclusively linked to the central

node. This results in a very central graph having a group centrality measure of one.

The clustering coefficient for a given node measures the number of connections

among the node’s neighbors [96], and is related to the transitivity concept in the

social network literature, where transitivity implies the idea of “a friend of a friend

is a friend.” It is defined as the proportion of local relationships among neighbors

compared to the potential that all of the neighbors are connected. The mathematical

formulation is defined as

CCL (ni) =
|{ei,j : vi, vj ∈ Kni , ei,j ∈ E}|

kni(kni − 1)/2

where Kni = {vj : ei,j ∈ E} is the neighborhood of ni and kni = |Kni | is the size

of the neighborhood. The quantity in the denominator is the maximum number of

edges possible in a graph of size kni . The overall graph clustering coefficient can be

computed by finding the mean of the nodal clustering coefficients. Another version of

the group clustering coefficient is discussed by Wasserman and Faust [95] as a measure

of triadic closure in a graph given by the ratio of existing triangular relationships, or

triads, over the potential triads:

CCL =
6× (# of triangles)

# of length two paths
.
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A length two path is simply an instance where one node is connected to two other

nodes, but the two nodes are not connected to one another.

Diversity, as defined by Richards and Wormald [77], measures how uniformly

connected the nodes are in a given graph. This measure is based on the square root

of the ratio of edges that share no common end points, or disjoint dipoles, over the

number of induced squares in the complete bipartite graph, KbN
2
c,dN

2
e, and is given by

CDV =

√
# of disjoint dipoles(

N
4

(
N
2
− 1
))2 .

For graphs that are not dense, the diversity measure is high. Therefore, this measure

is somewhat similar to the clustering coefficient since a lowly clustered graph may

indicate that there are few distinct communities, and that the graph is not diverse.

2.1.3 Other Network Measures.

An investigation on the correlation between twenty four network measures was

conducted by Guzman and others [34], who categorized these measures into four

groups using Principal Component Analysis (PCA). Their results demonstrate that

group degree centrality is only highly correlated to one other measure, pagerank, and

that together, these two measures form one of the four independent groups of corre-

lated measures as reproduced in Table 2. Further, they show that degree centrality is

significantly faster in terms of computation time when compared to pagerank. There-

fore, not only is degree centrality shown to be correlated to the other more complicated

measure, it was also more computationally efficient. However, the presence of asso-

ciativity does not imply agreement, so even if some of the measures are correlated,

they might not necessarily provide equivalent information. Additionally, a study by

Mohd-Zaid and Schubert Kabban [64] demonstrates that some higher moments and
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L-moments from the degree distribution of the Watts-Strogatz network is significantly

more useful in classifying the network than just the mean degree. This suggests that

using the characteristics of the whole degree distribution as opposed to a collection of

multiple graph measures may provide more information in characterizing a network.

Table 2. Groups of highly correlated network measures as adapted from [34]

Group 1 Group 2
Clustering coefficient Betweenness centrality
Soffer’s clustering coefficient Stress centrality
Squares clustering coefficient Length-scaled betweenness

Linearly-scaled betweenness
k-betweenness
Random walk betweenness
Proximal source betweenness

Group 3 Group 4
Load centrality Degree centrality
Proximal target betweenness Pagerank
Uncorrelated Group
Closeness centrality Eigenvector centrality
Communicability centrality Simple Diversity
General diversity Communicability betweenness
Current flow betweenness Approx. current flow betweenness
Closeness vitality Average neighbor degree

As previously stated, nodal degree is a basic and simple graph measure, and there

are other graph measures in the literature that attempt to characterize the complex-

ity and entropy of a network. Mowshowitz and Dehmer present a taxonomy and

overview of approaches to the measurement of graph complexity and probabilistic

measures of graphs [67]. It was noted that there has also been considerable effort in

applying various types of graph entropies in the field of network physics. Mowshowitz

and Dehmer claim that there are two categories of probabilistic measures for graph

complexity: intrinsic and extrinsic. Intrinsic measures use structural features of a

graph to determine a probability distribution while extrinsic measures impose arbi-
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trary probability distribution on graph elements [67]. For both intrinsic and extrinsic

probabilistic measures, a numerical value is usually obtained by applying an entropy

function to the distribution. For intrinsic measures, the measures include entropies

on the symmetry of the graph, orbits, chromatic information, radial centric informa-

tion, nodal degree, and weighted probablity schemes based on distances and degrees.

For extrinsic measures, the measures include Körner entropy [50], parametric graph

entropies, and non-parametric graph entropies. Körner entropy is not practical for

measuring the complexity of large scale networks due to the graph coloring problem

which is a non-polynomial time (NP)-hard problem. Parametric entropy measures

rely on information functions to assign probablities to nodes of a graph whereas non-

parametric measures are based on the eigenvalues of the characteristic polynomial of

the graph. Although these measures exist, they will not be the focus of this disserta-

tion as direct probabilistic measures computed on network characteristic rather than

entropy based measures will be the focus in this research.

2.1.4 Graph Generating Algorithms.

The first commonly used random graph generating algorithm proposed by Erdös

and Rényi [23] constructs a graph by connecting any pair of nodes via an edge with

probability p, and by assuming each edge is independent from every other edge.

This results in a graph of N nodes and m edges having an equal probability of

pm(1− p)(
N
2 )−m from all possible undirected simple graphs of N nodes and m edges.

Despite being a truly random graph, a disadvantage of the Erdös-Rényi algorithm is

that it is not scale-free [6] or small-world [96] which are properties that many real

world social network such as the World Wide Web possess [5]. A scale-free network

is defined as having a power law distribution for its nodal degrees. However, given

its history, the Erdös-Rényi algorithm is widely used in the literature as a baseline
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when making comparisons for network metrics and classifications.

A model based on two mechanisms that govern the scale-free power law distri-

bution of real world networks are proposed by Barabási and Albert[6]. They define

the two mechanisms to be: (i) networks expand continuously by the addition of new

nodes, and (ii) new nodes attach preferentially to nodes that are already well con-

nected. The model operates by first starting with an initial number of nodes N each

having degree m. This is followed by an iterative process of adding one node with m

edges where the edges are connected to an existing node i with degree ki based on

the preferential attachment probability

π(ki) =
ki∑
j kj

(2)

which is the probability that node i will be attached to the new node. Barabási and

Albert state that

[the capability that the model demonstrates in] reproducing the observed
stationary scale-free distributions indicates that the development of large
networks is governed by robust self-organizing phenomena that [is not
specific to the domain be it social, biology, or the world wide web]. [6,
p.509]

Watts and Strogatz propose a graph generator model that produces small-world

properties [96]. Small-world networks possesses the property where the shortest path,

L, between most pair of nodes in the networks are small and grows proportionately

to the logarithm of the network size, N , such that L ∝ logN . The algorithm for this

model functions by first starting with a ring lattice of size N . This is then followed

by rewiring each edge in the lattice with probability β such that duplicates and self-

loops are excluded. Many real world networks such as the neural network of the

worm Caenorhabditis elegans, the power grid of the western United States, and the

collaboration network of film actors are shown to possess small-world characteristic
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of having small average shortest path [96]. However, one disadvantage of the Watts-

Strogatz algorithm is that it produces a network that is not scale-free.

Therefore, an extension of the Barabási-Albert model was proposed by Holme

and Kim [38] that induces clustering into the Barabási-Albert graph and, in doing

so, combines both the scale-free and small-world properties into one single network

model. The model works by the same iterative process as the Barabási-Albert model

by connecting a new node, v, to a node, u, based on π(ku), but this is then followed

by a triad formation (TF) step of adding an edge between node v to a neighbor of

node u with probability p. An additional parameter, mt, is added to the model which

is the average number of TF trials per added vertex such that mt = (m − 1)p. The

original Barabási-Albert model is obtained when mt = 0. The additional TF step

is added in order to model the previously mentioned transitivity phenomenon which

has been observed in real world networks as shown by Newman [68].

Morris and others [66] created a prescribed node degree, connected graph (PNDCG)

algorithm that allows the user to define the scale parameter as well as the cluster-

ing coefficient of the network. Comparisons of the average clustering coefficient with

those from the Erdös-Rényi and Barabási-Albert generated networks show that their

algorithm is able to generate networks with a wider distribution of average clustering

coefficients.

Although the Barabási-Albert and the Watts-Strogatz algorithm are not fully

representative of real world networks, they are the basis upon which other network

models are built in terms of the properties that they possess, namely scale-free and

small world. Therefore, it is important that both models first be investigated before

all others. Mohd-Zaid and Schubert Kabban [64] have shown that the Watts-Strogatz

network can be well characterized and classified with good accuracy using PCA on the

moments and L-moments of some graph measures. Additionally, the model by Holme
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and Kim [38] and Morris and others [66] are built upon the Barabási-Albert model

and has the same underlying degree distribution which follows the power law, and

thus far there are no method that is able to characterize a network as the Barabási-

Albert. It is necessary that a well defined method first be established to characterize

a network as Barabási-Albert before it can be extended to the other models. For

these reasons, the focus of this research is aimed solely at the Barabási-Albert graph.

Any extension to other types of networks is left for future works.

2.1.5 Graph Matching and Classification.

The research objective for this dissertation is to develop a test of hypothesis for

comparing graphs with applications in network classification as well as monitoring

of network degradation. Current state of the art methods for graph classification

are now discussed which highlight gaps and help motivate the methodology for this

research. Of particular interest is the concept of characterizing a given network based

on its local structures. Graph classification is defined as any method of assigning a

given graph to a library of graphs with known properties. Since the proposed method

falls in the realm of graph classification, a survey on graph classification is presented

to expose the reader to the various methods available in the literature.

A graph classification model using the maximum entropy extracted from local

patterns was proposed by Moonesinghe and others [65]. This approach uses Frequent

Subgraph Mining (FSG), which was intially proposed by Inokuchi and others [43],

in order to generate frequent subgraph patterns that are then used to build the

prediction model. FSG takes a graph and a minimum support threshold ε to generate

all connected subgraphs that occur in at least ε% of the graph. The subgraphs are then

used to construct a binary feature vector which is then used to compute the maximum

entropy of the graph in an iterative fashion until convergence in entropy occurs. The
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approach has been compared to an AdaBoost and Support Vector Machine (SVM)

classifier on the well known Chemical Compound [37], AIDS [103], Cancer [103], and

Webspam datasets, and it performs comparatively with the other two methods, but

not significantly better.

Jin and others [45] also proposed a graph classification method by creating clas-

sification rules based on pattern co-occurrence from the subgraphs. The method

only performs pattern mining once by utilizing the Canonical Adjacency Matrix for

pattern enumeration without repetition. As such, this method results in faster com-

putation time than other methods that require multiple iterations. The method can

be integrated into any subgraph mining algorithm by organizing patterns into groups

of co-occurrence rules to form a rule set. Whenever a pattern is generated, the dis-

crimination score of every rule is calculated with the pattern’s inclusion and then the

pattern is inserted into the rule that yields the greatest increase in discrimination

score. The algorithm then finds a co-occurrence rule set that maximizes the number

of graphs that can be classified correctly. The authors compared their method against

LEAP[98]+SVM and gPLS (partial least squares) on the well known Protein [2] and

PubChem chemical compound [1] datasets for truth classification. The results show

that their technique performs comparably to the other techniques with magnitudes

faster computation time.

Ketkar and others [46] presented an empirical comparison of the major approaches

for graph classification, namely, SubdueCL which was first proposed by Gonzalez and

others [32], FSG with SVM, a walk-based (direct product) kernel, FSG with Ad-

aBoost, and DT-CLGBI which is a combination of FSG and decision trees as pro-

posed by Nguyen and others [72]. SubdueCL is the pioneering algorithm for graph

classification, and it operates by creating a decision list from subgraphs and perform-

ing an isomorphism test with a new graph for classification. FSG with SVM works by
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using frequent subgraph mining to create a feature vector that is then used as inputs

for SVM classification. The walk-based kernel is created by taking the direct product

of two graphs as a similarity measure. FSG with AdaBoost works by using FSG to

create a list of subgraphs and AdaBoost to create a list of positive and negative exam-

ples from the subgraphs that results in the upper bound of the gain that is associated

with the supergraph. DT-CLGBI combines aspects of frequent subgraph mining and

decision trees. The algorithms were compared using the Chemical Compound [37]

dataset as well as artificial network data generated using an in-house data generating

technique that assumes uniform distribution of vertex labels, edge labels, and degree

for truth classification. The results show that the walk-based kernel performs poorly

when the average degree is high and SubdueCL performs poorly when the graph is

disconnected. Other methods perform similarly to one another.

Another technique for comparing graphs using subgraphs structures was intro-

duced by Macindoe and Richards [61]. Their technique is performed by computing

three summarizing features from the subgraphs, and then making a comparison using

the Wasserstein metric [92] between the distributions of summarizing features to that

of subgraphs from other graphs. The features used by the proposed method are the

Leadership (also known as Closeness Centrality) [25], Bonding (also known as Cluster-

ing Coefficient) [95], and Diversity [77] measures as defined in Section 2.1.2. Macindoe

and Owens then made comparisons between fifteen different network datasets of var-

ious types such as coauthorship, social, email, semantic, literature, economic, sports,

neural, and citations. They used the proposed technique for network comparisons by

performing clustering analysis on the set of measures from each graph. The results of

their analysis suggest that graphs can be shown to be similar based on the full graph

structure but dissimilar by their local structures.

Employing the statistical knowledge obtained from nodal attributes, Gibert and
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others [28] proposed four fuzzy graph embedding methods that utilize known statis-

tical techniques namely fuzzy k-means and Gaussian Mixture Models (GMM). These

techniques were then applied to SVM using the linear as well as the Radial Basis

Function (RBF) kernels for performing graph classification. The methods were com-

pared against the k-Nearest Neighbor classifier as well as another Graph Edit Distance

(GED) based embedding method that is applied to SVM on the Letter, Electronic

Drawing, Digit, Fingerprint, and COIL databases [78] with the labels removed in or-

der to illustrate the generalizability of their methods on unlabeled graphs. However,

the results from their experiments show that their proposed methods performed no

better than the two referenced methods with the exception of the result based on the

COIL dataset. They claim that one advantage that their methods have over previ-

ously proposed methods is the computational efficiency provided by their embedding

technique of transforming the graphs into vector forms.

By using already available network measures, Li and others [58] presented a graph

classification technique that utilizes a feature vector of twenty graph measures which

is then applied to SVM using the RBF kernel for classification. The approach was

compared to other kernel based graph classification techniques such as Random Walk,

Shortest Path, Cyclic Pattern, Subtree, and Graphlet and Subgraph kernels on the

Chemical Compound [37], Protein [83], and Cancer datasets [19, 9, 8]. Their ap-

proach did not have an overall better accuracy although it was consistently faster in

comparison to the kernel methods. A comparison between subgraph feature meth-

ods shows that subgraph features are not as good as the proposed approach of using

the full graph measures. The authors also conducted a feature importance study for

each dataset using SVM recursive feature elimination and found that the top features

based on number of occurrence include: average clustering coefficient, number of

nodes, number of eigenvalues, number of edges, energy (which is the squared sum of
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the eigenvalues of the adjacency matrix), and average degree. A comparison with an

augmented feature vector with ten additional features shows that the smaller feature

set is sufficient to capture most of the important structural properties.

Ugander and others [91] proposed a coordinate system based on triadic struc-

ture within subgraphs of k = {3, 4} for characterizing possible sub-networks within

a social network. They use a Markov Chain to model the frequency space of triadic

evolution for a size k = {3, 4} subgraphs within a graph. Then, using graph homo-

morphism, they find inequalities governing subgraph frequencies which are then used

as constraints for the linear program for finding the extremal bounds for the frequency

space. They state that the bounds are not just properties of social graphs but are

universal properties of all graphs. This is then used to identify regions that are theo-

retically inhabitable but not populated by the social graphs that they examine. They

demonstrate their method on a Facebookr dataset by performing classification of

sub-networks of various sizes into neighborhood, groups, and events through logistic

regression by using the residuals from their method against the optimal parameter as

features. This method was compared to the performance of using only global graph

features such as size of k largest components, size of k-core (the maximal subgraph

having degree k), number of components in k-core, number of composition in k-core,

degeneracy, size of k-brace (subgraph formed by all edges of embeddedness less than

k), and number of components in k-brace. The results show that their proposed

method performed much better than the ones that uses only global measures.

Lagraa and others [53] proposed a new distance measure for comparing graphs us-

ing modular decomposition for obtaining prime graphs. This is then used to compare

with other network’s prime graphs using probe distance, which measures the number

of edit operations needed to transform one graph into a second graph by label edits,

and star distance [53]. Modular decomposition is first used to obtain prime graphs
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which are graphs that have only trivial modules. They then used graph probing and

star comparison to compute a distance between these graphs. They also prove that

their distance is an upper bound of the star distance proposed by Zeng and others

[105]. They note that the prime graph measure is only a pseudo-metric since it does

not have a uniqueness property. The authors then used the AIDS, Protein, Chemical

Compound, Electronic Drawing, Letter, Protein, and DNA/RNA datasets [78, 13] to

perform comparisons and classifications. Comparisons were only performed on the

AIDS and Proteins datasets. This was done by computing the pairwise distance of

10 graphs from each group. The distance and computation time were then compared

against those obtained using regular GED and star distance. The results show that

the prime distance is comparable to the star distance in terms of run time and does

act as an upperbound for the star distance as claimed. The results from classification

shows that prime distance is only comparable to star distance.

Despite all of the work presented in this subsection, as of this writing, there are no

methods available in the literature that can classify a network as a particular network

model such as the Barabási-Albert network. Instead, to date, methods have focused

on comparing only specific features of particular graphs. As previously stated, the

method of network characterization that is presented in this dissertation is useful for

many reasons such as network visualization and network generation, to name a few.

In addition, any knowledge that is available for the particular network model can now

be applied to the network in question.

2.2 Statistical Background

In order to characterize a given network as Barabási-Albert network, various sta-

tistical tools that can utilize the properties of the network model are used. In this

section, the definition of the power law distribution as it relates to the degree distribu-
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tion of the Barabási-Albert graph will be described as will moments and L-moments

which will be used to both derive the statistical tests to classify a network as a

Barabási-Albert network and to detect degradation in a Barabási-Albert network.

2.2.1 Barabási-Albert Graph Degree Distribution.

The nodal degree of the Barabási-Albert scale-free graph can be derived by using

the mean field theory as described by Barabási-Albert [6] and reproduced here. Let

m0 be the number of nodes initially included in the graph and m be the number of

edges added at each iteration over t iterations, where

m ≤ m0. (3)

The size of the graph at a particular iteration is then n = m0 + t, the total number

of edges E = mt, and consequently the total degree of the graph
∑
ki = 2mt. Given

the preferential attachment in Equation (2), the rate of change for ki over t iterations

could be written as

∂ki
∂t

= mπ (ki) =
ki
2t
. (4)

Solving the differential equation for ki we have

∂ki
∂t

=
ki
2t

1

ki
∂ki =

1

2t
∂t

ln ki =
1

2
ln t+ c

ki = t1/2ec.

Since the initial degree of a newly added node is m, then the initial condition for

the differential equation is ki (ti) = m where ti is the iteration at which node i was
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created. Therefore, m = t
1/2
i ec. Substituting in for ec, the degree for node i is

ki =

(
t

ti

)1/2

m. (5)

Using Equation (5), the cumulative density function (CDF) for ki may be expressed

as

Fki (x) = Pki (ki ≤ x) = 1− Pti
(
ti ≤ t

m2

x2

)
.

Since each node i is added at equal time intervals, then the probability density func-

tion (PDF) for the time at which node i is added, ti, is f (ti) = 1
n
, which results in ki

having the PDF

fki (x) =
∂

∂k
Fki (x)

=
∂

∂k

[
1−

∫ tm
2

x2

0

1

n
dti

]

=
∂

∂x

[
1− tm2

nx2

]
= 2m2x−3 t

n

where t = n−m0 and x ∈ [m,∞).

Thus for finite n, the degree distribution is

fki (x) = 2

(
m

√
(n−m0)

n

)2

x−3

which implies that the degree distribution of the Barabási-Albert graph follows a

Pareto

(
m
√

(n−m0)
n

, 2

)
distribution [7]. However, as the size of the graph increases,

n→∞, the distribution of the degree converges to a Pareto (m, 2) distribution.

Now consider a starting condition using a complete graph with m0 = m to guar-

antee a connected graph for any iteration. Here, the total degree at the end of any
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given iteration is
∑

j kj = 2mt+m(m− 1), thus Equation (4) becomes

∂ki
∂t

=
ki

2t+m− 1

which results in

ki =

(
2t+m− 1

2ti +m− 1

)1/2

m.

However, although each node i is added at equal time intervals, there are only

t+ 1 intervals since all nodes at time t0 are created simultaneously, thus f(ti) = 1
t+1

resulting in ki having the PDF

fki(x) =
∂

∂x

[
1− (2t+m− 1)m2

2(t+ 1)x2
− (m− 1)

2(t+ 1)

]
= 2

(√
2t+m− 1

2t+ 2
m

)2

x−3,

where t = n−m0, and since m0 = m,

fki(x) = 2

(√
2n−m− 1

2n− 2m+ 2
m

)2

x−3

which is a Pareto
(√

2n−m−1
2n−2m+2

m, 2
)

distribution that converges to Pareto(m, 2) for

m = 3 or as n → ∞. Thus, the degree distribution of the Barabási-Albert graph

converges to a Pareto(m, 2) for very large networks with either an empty or connected

starting condition.

The Pareto distribution has the form of the power law distribution, and was

named after the early works by Pareto and Busino [73]. It also has a discrete form,

the Zipf’s law [108]. The continuous power law degree distribution, however, is only

an approximation of the truly discrete degree distribution. The discrete version of the

power law distribution, the Zipf’s distribution, can be obtained using the power series
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distribution. The form of the Zipf’s and Yule-Simon distribution is demonstrated later

in Section 2.2.3, both of which have been suggested as a better proxy for the degree

distribution of the Barabási-Albert network [70].

2.2.2 Power Law Estimation.

The degree distribution of the Barabási-Albert graph is heavily skewed right [6, 4].

However, when the density is binned and plotted using a skewed logarithmic scale on

the vertical and horizontal axes, the distribution follows an approximately straight line

as shown in the degree distribution of a simulated Barabási-Albert graph in Figure 3.

This line may be estimated by observing the relationship between the expression for

Figure 3. Plot of a Barabási-Albert (n = 100000,m = 2) degree distribution and its
doubly log plot.

the power law distribution and its log. A probability distribution is said to follow a

power law if its PDF is of the form

f(x) = Cx−β. (6)

The log of this pdf is

ln f(x) = lnC − β lnx
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which is an expression for a straight line. The scalar β is the exponent of the power

law whereas the constant, lnC, is often set to satisfy the conditions of a probability

distribution (i.e. Equation (6) integrates to unity). Once the linear form is estimated

via data through least squares (LS), so is the power law distribution.

To provide a better approximation of the power law distribution, Newman [70]

suggests the CDF of the data be plotted instead of the PDF. He argues that using

the CDF bypasses the need for binning the data in order to create the PDF; a process

which is more subjective. To maintain a similar downward trend, the complement of

the CDF, which is often called the survivor function (SF), is plotted instead of the

CDF itself. The complement of the CDF of the power law distribution is given by

S(x) = 1− F (x) = C

∫ ∞
x

t−βdt =
C

β − 1
x−β−1.

This SF also follows a power law, but with a shallower slope since the exponent is

now −(β + 1). Figure 4 demonstrates a plot of the SF for the data of the degree

distribution in Figure 3. As can be seen, the straight line function in Figure 4 is more

Figure 4. The survivor function of the Barabási-Albert (n = 100000,m = 2) degree
distribution.

well behaved with less perturbation on the tail in comparison to its PDF in Figure 3.

It is easily shown that the maximum likelihood estimator (MLE) of β for the
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Pareto(m,β) distribution can be derived by considering the loglikelihood function

L(β|
˜
x,m) = nβ lnm+ n ln β − (β + 1)

∑
ln(xi)

in which x ∈ [m,∞). Thus m̂MLE = x(1), and

β̂MLE = n

[∑
ln

xi
x(1)

]−1

= n

[
ln

∏
xi

xn(1)

]−1

.

However, a recently developed method of estimating the parameters of the Pareto

distribution was proposed by Clauset and others [16] that is a combination of a MLE

for β and nonparametric estimate for m. In their method, the estimate for β is the

modified MLE

β̂MLEnp ' n

[∑
ln

xi
x(1) − 1

2

]−1

.

For m, the value that minimizes the distance between the hypothesized degree dis-

tribution and the empirical degree distribution based on the Kolmogorov-Smirnov

(KS) statistic [52] is chosen, denoted m̂MLEnp. Based on simulated data, they also

suggested that overestimation of m is preferred to underestimation because the latter

causes a larger deviation of β̂ from the true β.

2.2.3 Discrete Power Law.

The power law as applied to the degree distribution assumes that the degree is

continuous. However, a power law distribution can be derived assuming the degree is

discrete. For the discrete case, let the probability p(x) for an integer x ≥ 1 be

p(x) = Cx−β. (7)

28



www.manaraa.com

To assure that p(x) is a probability distribution, a constant C is needed such that

1 =
∞∑
x=1

p(x) = C

∞∑
x=1

x−β = Cζ(β)

where ζ(β) is the Riemann ζ-function. Thus, the probability mass function (PMF) is

p(x) =
x−β

ζ(β)

and if the power law has a lower bound m, then

p(x) =
x−β

ζ(β,m)
(8)

where ζ(β,m) =
∑∞

x=m x
−β and x ∈ {m,m+1, . . .}. The distribution in Equation (8)

is referred to as the Zipf law after the work by Zipf [108].

Despite the straightforward development, Newman [70] suggests that the distribu-

tion derived from Equation (7) is not a good generalization of the power law for the

discrete case. Another form of the power law for the discrete case is the Yule-Simon

distribution [101, 87] which has been preferred over Zipf’s law because the summation

of the beta-function which makes up the distribution can be expressed in closed form

unlike the Zipf’s law that requires a form of the Riemann function. Yule [101] and

Simon [87] proposed that the power law for the discrete case has the form

p(x) = C
Γ(x)Γ(β)

Γ(x+ β)
= CB(x, β)

where B(x, β) is the Legendre beta-function. Specifically, the normalizing constant
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C for the Yule-Simon distribution is obtained by

1 =
∞∑
x=1

p(x) = C

∞∑
x=1

B(x, β) = C
1

β − 1
,

thus the PMF of the Yule-Simon distribution is expressed as

p(x) = (β − 1)B(x, β)

for x ∈ {1, 2, . . .}. However, given a condition where x ≥ m, the truncated Yule-

Simon distribution is given by

p
X≥m(x) =

(β − 1)B(x, β)∑∞
x=m(β − 1)B(x, β)

=
B(x, β)∑∞

x=m

∫ 1

0
tx−1(1− t)β−1dt

p
X≥m(x) =

B(x, β)

B(m,β − 1)

for x ∈ {m,m+ 1, . . .}. Note that the truncated distribution for this application will

be considered since the edge parameter m for the Barabási-Albert graph imposes a

lower bound on the support for the degree distribution.

There are many forms of expressing the power law phenomenon depending on

the nature of the data. However, the knowledge of having the power law within the

degree distribution of the Barabási-Albert is useful since it allows us to test and act

on the known distribution of degree for network of interest. Despite those variations,

the continuous form is often used for network applications due to the relatively large

size of networks in general.
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2.2.4 Moments and L-Moments.

In probability and statistics, a moment is a quantitative measure that describes

a characteristic of a random variable. An extensive set of moments may give a more

descriptive summary for some random variables over the traditional approach of re-

porting the mean and variance since the latter only describes two moments of a

distribution related to the center mass and scale of the distribution. It should be

noted that while the existence of a moment generating function (MGF) for a random

variable implies that there exists an infinite set of moments, the converse is not true.

The characterization of a set of moments is not enough to uniquely define a random

variable because there may exists another random variable having the same set of

moments. However, uniqueness of moments is guaranteed if the random variables

have bounded support or if the MGF exists in the neighborhood of zero [14]. The `th

moment of a continuous PDF, f(x), is defined as

µ` = E
[
X`
]

=

∫ ∞
−∞

x`f(x) dx

and for a discrete PMF, P (X = x), as

µ` = E
[
X`
]

=
∑
x∈X

x`P (X = x)

where the mean µ is defined as the first moment of a distribution. The `th central

moment is defined as

µ́` = E
[
(X − E [X])`

]
.

It is often useful to scale the upper moments (3rd, 4th, and so forth) by a function of

the variance so that comparison can be made between different distributions regardless
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of the variance. An `th standardized moment is defined as

γ` =
E
[
(X − E [X])`

]
σ`

(9)

where σ2 = µ́2 defines the variance of the distribution. The 3rd and 4th standard-

ized moments measure the symmetry and peakedness, respectively. However, not all

moments exist for every distribution and no moments exist for some distributions,

notably the Pareto distribution when β ≤ 1. One set of metrics that solves the issue

of nonexistent moments for some distributions is the L-moment. L-moments have a

theoretical advantage of being able to characterize a wider range of distributions since

the set of L-moments for a random variable exists if and only if the random variable

has a finite mean [40]. However, this does not solve the problem for distributions

where the mean does not exist such as the Pareto distribution when β ≤ 1. Instead,

other techniques can be used for those distributions such as the trimmed L-moments

as defined by Elamir and Seheult [21]. Trimmed L-moments, however, are not the

focus of this dissertation.

L-moments were first proposed by Hosking [40] as a conglomerate result that was

derived from a collection of previous results [30, 84, 85, 20, 15, 49, 62, 33]. L-moments

are linear combinations of order statistics that describe the location and shape of the

probability distribution analogous to classical moments. The rth L-moment is defined

as

λr =
1

r

r−1∑
i=0

(−1)i
(
r − 1

i

)
E [Xr−i:r] (10)

whereXj:n denotes the jth order statistic (jth smallest sample value) in an independent

sample of size n. Note that λ1 = E[X1:1] = E[X] = µ. The rth L-moment ratio is

defined as

τr =
λr
λ2

; r = 3, 4, ...
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and is akin to the standardized conventional moment as defined in Equation (9) but

has an open bound of (−1, 1). The 1st and 2nd L-moments are referred to as L-mean

and L-scale, respectively, whereas the 3rd and 4th L-moment ratios are referred to as

L-skewness and L-kurtosis, respectively.

Hosking [40] states that a set of L-moments is unique to a particular distribution

as long as the mean of the distribution exists. Further, Hosking stated that if the

L-moments do exist, then the first two L-moments, λ1 and λ2, as well as the third

and fourth L-moment ratios, τ3 and τ4, are enough to summarize the main features

of a probability distribution. Additionally, the set of L-moments is considered more

robust to outliers than conventional moments [40]. For example, a distribution with

one very outlying point will cause the variance to increase quite notably but does not

affect the L-scale to the same extent.

Estimating L-moments can be achieved by considering the probability weighted

moments (PWM) which are used mainly to estimate the parameters of distributions

that can be expressed in inverse form. Hosking [40] has shown that the first four

L-moments can be expressed as

λ1 = ξ0 (11)

λ2 = 2ξ1 − ξ0 (12)

λ3 = 6ξ2 − 6ξ1 + ξ0 (13)

λ4 = 20ξ3 − 30ξ2 + 12ξ1 − ξ0 (14)

where ξr are PWMs defined by Greenwood and others [33] as

ξr =

∫ 1

0

x(G)Gr dx

such that G is a nonexceedance probability. Nonexceedance probability is the prob-
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ability that an event X is smaller than or equal to the reference value Xr. Unbiased

estimators for ξr were defined by Landwehr and others [54] as

ξ̂r =
1

n

n∑
i=1

(i− 1)(i− 2) · · · (i− r)
(n− 1)(n− 2) · · · (n− r)

x(i).

Estimates of the L-moments can be obtained by applying the estimated PWMs to

Equations (11) to (14) resulting in the L-moment estimate, lr, given by:

lr =

(
n

r

)−1 ∑
1≤i1<i2<...<ir≤n

1

r

r−1∑
j=0

(−1)j
(
r − 1

j

)
xir−j :n, r = 1, 2, . . . , n. (15)

Direct estimators of the first four L-moments were derived by Wang [94] that circum-

vent the need for using PWMs. These estimators are defined, respectively, as

λ̂1 =
(
n
1

)−1∑n
i=1 x(i)

λ̂2 = 1
2

(
n
2

)−1∑n
i=1

((
i−1

1

)
−
(
n−i

1

))
x(i)

λ̂3 = 1
3

(
n
3

)−1∑n
i=1

((
i−1

2

)
− 2
(
i−1

1

)(
n−i

1

)
+
(
n−i

2

))
x(i)

λ̂4 = 1
4

(
n
4

)−1∑n
i=1

((
i−1

3

)
− 3
(
i−1

2

)(
n−i

1

)
+ 3
(
i−1

1

)(
n−i

2

)
−
(
n−i

3

))
x(i).

Recall that L-moments are unbounded, but L-moment ratios fall in the interval

(−1, 1). Additionally, the second L-moment is strictly positive, and the fourth L-

moment ratio, L-kurtosis, is shown to have a tighter bound of 1
4
(τ 2

3 − 1) ≤ τ4 < 1

[40].

Even though the definitions presented are for continuous random variables, L-

moments can also be used with discrete distributions since Equation (10) remains

valid and Equation (15) still provides unbiased estimators for λr; however, expressions

for L-moments of common discrete distributions tend to be complicated [40]. Hosking

also stated that since discrete random variable can be approximated by a continuous
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random variable, certain results for continuous variable L-moments are also valid for

discrete random variables [39].

An extension to multivariate L-moments analogous to comoments, coined L-

comoment matrices, was proposed by Serfling and Xiao [82]. Comoments are similar

to the variance-covariance matrix but instead of estimating the second central mo-

ment, they instead estimate the higher moments. Let (X(1), X(2)) have CDF F with

marginal distributions F1 and F2 and L-moment sets {λ(1)
` } and {λ(2)

` }, respectively,

then the `th L-comoment of X(1) with respect to X(2) is defined by Serfling and Xiao

[82] as

λ`[12] = λ`[21] = Cov(X(1), P ∗`−1(F2(X(2))))

where

P ∗` (u) =
∑̀
j=0

(−1)`−j
(
`

j

)(
`+ j

j

)
uj

and P ∗0 (u) ≡ 1. The orthogonal polynomials P ∗` (u) for 0 ≤ u ≤ 1, ` = 0, 1, 2, . . ., com-

prise the shifted Legendre system [82]. Now suppose that {(X(1)
i , X

(2)
i ), i = 1, . . . , n}

is ordered by X
(2)
i , then the variate X

(1)
i that is paired with X

(1)
r:n is called the con-

comitant X
(12)
[r:n]. Serfling and Xiao [82] have shown that

E(X
(12)
[r:n]) = nE

(
X

(1)
1 |X

(2)
1 = X

(12)
[r:n]

)
= n

(
n− 1

r − 1

)
E
(
X(1)[F2(X(2))]r−1[1− F2(X(2))]n−r

)
so the `th L-comoment of X(1) with respect to X(2) can be expressed as

λ`[12] = `−1

`−1∑
j=0

(−1)j
(
`− 1

j

)
E
(
X

(12)
[`−j:`]

)
.

Given a random vector X = (X(1), . . . , X(d)), then the `th L-comoment for each pair

(X(i), X(i)) for 1 ≤ i, j ≤ d is the (i, j)th entry of the `th multivariate L-moment
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matrix, Λ = (λ`[ij])d×d. Λ1 is simply the vector mean, whereas Λ2,Λ3, and Λ4

are termed L-covariance, L-coskewness, and L-cokurtosis, respectively. Although the

concept of L-comoments are presented here for completeness, they are not the focus

in this research.

Distribution of Moments and L-Moments.

Since the estimates of the moments and L-moments are functions of random vari-

ables, then they are also random variables with underlying distributions. The dis-

tribution for the sample mean of certain distributions, such as the χ2, Exponential,

and Gamma distributions, can be easily derived using their MGF, whereas others

can be obtained through transformation of variables [14]. With the exception of the

Normal distribution and the sample moments for the distributions to be described in

this subsection, no extensive work is available in the literature in characterizing the

exact distributions of the sample mean, variance, skewness, and kurtosis. Table 3 lists

the expected mean, variance, skewness, and kurtosis of the χ2, Exponential, Gamma,

and Normal distributions. The distribution of sample skewness and kurtosis of the

Normal distribution is a simulated approximation where the values are compared to

the percentile values of the proposed distributions and thus were shown to be the

closest fit. The closed form function for the distribution of the sample variance for

the Gamma distribution was derived by Royen [79].

The expected values of L-scale, L-skewness, and L-kurtosis for a noninclusive

selection of distributions are listed in Table 4 as given by Hosking [39, 40]. As of this

writing, no publication on characterizing the distributions of the L-moments have

been found in the literature. However, Elamir and Seheult [22] have derived the

expressions for the exact variances of the first four sample L-moments as well as their

covariances.
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Table 3. Distribution of various moments and central moments for four well known
distributions

Distribution Mean Variance Skewness Kurtosis

Chi-square(p) p 2p 2
√

2
r

12
r + 3

µ̂1 ∼ Γ(np2 ,
2
n )

Exponential(λ) λ λ2 2 9

µ̂1 ∼ Γ(n, βn )

Gamma(α, β) αβ αβ2 2√
α

6
α + 3

µ̂1 ∼ Γ(nα, βn )
σ̂2 ∼ derived by

Royen [79]

Normal(µ, σ2) µ σ 0 3

µ̂1 ∼ N(µ, σ
2

n ) (n−1)σ̂2

σ2 ∼ χ2
n−1

γ̂3 ∼ t [74, 75]
γ̂4 ∼

Pearson-IV[74, 75]

Table 4. L-scale, L-skewness and L-kurtosis of well known distributions as derived by
Hosking [39]

Distribution L-Scale L-Skewness L-Kurtosis

Exponential(λ) 1
2λ

1
3

1
6

Gamma(α, β) 1√
π

βΓ(α+ 1
2

)

Γ(α)
6I1/3(α, 2α)− 3 Available in [39]

Normal(µ, σ2) σ√
π

0 30 1
π

tan−1
√

2− 9

Pareto(α, β) α
β(1−1/α)(2−1/α)

1+1/α
3−1/α

(1+1/α)(2+1/α)
(3−1/α)(4−1/α)

Student’s t, 2 df π/28/2 0 3/8

Student’s t, 4 df 15π/64 0 111/512

Uniform(a, b) (b−a)
6

0 0
Note: Ix(p, q) is the incomplete beta function.

Applications of Moments and L-moments.

A few test of hypothesis methods have been developed using the third and fourth

standardized moments and L-moments ratios [76, 44, 18, 81, 35] for testing depar-

tures from normality. Pearson and others [76] introduced two tests of using the sample

skewness and kurtosis against large scale simulated values obtained for the Normal

distribution called the K2 and R tests, and they compared the power of their tests
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against well known tests for normality such as Shapiro-Wilk’s, Shapiro-Francia’s, and

D’Agostino’s. An extension of their method was proposed by Seier [81] using normal-

ization transformations of the skewness and kurtosis. Jarque and Bera [44] derived

a method for testing the normality, homoscedasticity, and independence of regres-

sion residuals by using the Lagrange multiplier procedure and the sample skewness

and kurtosis of the residuals. D’Agostino and others [18] discussed the usefulness of

using the test of skewness, test of kurtosis, as well as the K2 test for testing nor-

mality especially in lieu of traditional methods such as the chi-squared test and the

Kolmogorov-Smirnov test due to better power properties that the former three tests

possess. A test on skewness and excess-kurtosis (which is the kurtosis measure cor-

rected for the Normal distribution) for the one-way error component model used for

testing normality was proposed by Galvao and others [26]. They developed two new

statistics for testing skewness and kurtosis and derived the distributions of the statis-

tics using large sample theory. They also noted that although the test was created

for the one-way error component model, this assumption could be relaxed by con-

sidering the variance-covariance structure for skewness and kurtosis to accommodate

deviations from the one-way error component model.

Elamir and Seheult [22] created a new test of symmetry using L-moments by

using the third sample L-moment standardized by the standard error obtained from

the sample. They then used a Quantile-Quantile plot to compare the distribution

to the quantile values of a given known distribution. Harri and Coble [35] extended

the work of Pearson and others [76] by using L-skewness and L-kurtosis in place

of their conventional counterparts. L-comoments was applied to robust financial

portfolio allocation by Yanou [99] where they used Random Matrix Theory to extract

information from the L-variance-covariance matrix.

A great deal of research has been conducted with respect to the application of L-
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moments on the field of environmental sciences to summarize data and fit frequency

distributions. Some examples include analysis on the flood frequency in the KwaZulu-

Natal province as conducted by Kjeldsen and others [47], low streamflow analysis in

the United States by Kroll and Vogel [51], analysis on the flow-duration-frequency

behavior of British rivers based on small sample data by Zaidman and others [104],

extreme wind quantile estimation using frequency analysis by Goel and others [31],

and distribution estimation of Canadian annual minimum steamflow by Yue and Pilon

[100]. A more extensive list of examples can be found in Hosking and Wallis [42].

A method of deriving a distribution with maximum entropy by conditioning on

the first r L-moments was proposed by Hosking [41]. The Principle of Maximum

Entropy states that if nothing is known about a distribution other than the class in

which it belongs, then the distribution with the largest entropy should be chosen as

the closest fit. By maximizing entropy, the amount of prior information built into the

distribution is minimized. Given a continuous and differentiable CDF, F , with PDF,

f , that is non-zero within its support and a set of L-moments, Hosking showed that

the distribution that gives the maximum entropy has a density-quantile function that

is a polynomial of degree r called the polynomial density-quantile (PDQ) which is a

function of the quantile function, Q, as listed in Table 5. Here, entropy is defined as

H =

∫ ∞
−∞
{− log f(x)}f(x) dx.

The quantile function Q is defined as the inverse of the CDF, F (Q(u)) = u, 0 < u < 1.

The quantile function is continuous and differentiable on an open bound (0, 1), and

Q′(u) = 1
f(Q(u))

. The density quantile function is then defined as f(Q(u)). Hosking

illustrated the use of this method by performing a nonparametric estimation of the

distribution for suicide rate data [86] and compared it against a kernel method as

proposed by Wand and Jones [93]. The distribution of the data was shown to be
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skewed right. However, even though the results show that the density fits are similar,

the PDQ distribution appears to be less influenced by the larger data values.

Table 5. Maximum entropy distribution under different constraints on L-moments as
adapted from [41]

Specified L-moments Range of Distribution
(−∞,∞) [L,∞) [L,U ]

None No Solution No Solution Uniform
λ1 No Solution Exponential Truncated Exponential
λ1, λ2 Logistic PDQ2

1 PDQ2
1

λ1, λ2, λ3 PDQ3 PDQ3 PDQ3

λ1, λ2, λ4 PDQ4 PDQ4
2 PDQ4

λ1, λ2, . . . , λr PDQr PDQr PDQr
λ2 Logistic3 No Solution PDQ2

λ2, . . . , λr PDQr
3 No Solution PDQr

λ3, . . . , λr No Solution No Solution PDQr
PDQr denotes a PDQ distribution whose density-quantile function is a polynomial of degree r.
PDQ3 is a PDQ3 distribution whose density-quantile function f(Q(u)) is zero at u = 0 and 1.

2.3 Summary

This chapter presents a literature review and background on two key components

for this dissertation; these are 1) graph theoretic definitions and some of the resulting

development with which it is associated and 2) definitions of statistical concepts to

include power laws and L-moments. Graph definitions were discussed to include graph

and network measures, particularly those relating to the degree. It was also shown

that some of the more basic measures such as degree, which is highly correlated

to more complicated measures, have the advantage of being more computationally

efficient. In addition, it has been shown that higher moments and L-moments of

the degree distribution are statistically significant in characterizing the network as

opposed to using a collection of various measures as listed in Table 2. These results

1Some instances of PDQ2 are truncated logistic distribution
2Symmetric distribution
3Location parameter undetermined
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are the motivation for the selection of network degree measure and features of the

degree distribution as a basis for the developed tests in this research. A discussion

on graph generating algorithms was briefly given to demonstrate some of the possible

ways to randomly create synthetic graphs with known characteristics. Lastly, graph

matching and classification techniques were discussed to underline some of the useful

ideas that has emanated from the area particularly that of characterizing a network

using its local structures.

The power law is then discussed in further detail specifically as it relates to the

degree distribution of the Barabási-Albert graph. An introduction of methods for es-

timating the continuous power law which includes the LS method on the log of the his-

togram of the distribution, LS method on the log of the SF, and MLE-nonparametric

methods were given. Particularly, the LS method on the log of the PDF is susceptible

to the binning that is chosen for the histogram, whereas the LS method on the log

of the SF provides a better estimation since the SF is not susceptible to binning.

This is followed by explanation of the discrete versions of the power law, the Zipf law

and Yule-Simon distribution. For moments and L-moments, a few important defini-

tions were highlighted to help introduce the reader to the concepts. A list of tests of

normality using moments and L-moments was then discussed followed by a method

of deriving a probability density with maximum entropy for a random sample by

defining the set of L-moments. Further, examples of the usefulness of these measures

in characterizing and testing various phenomena were examined. These definitions

and results motivate why these distributional characterization will be used in the

derivation of the test statistics for the test of hypothesis.
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III. Network Characterization

Recall that the degree distribution of the Barabási-Albert model is well repre-

sented by the Pareto distribution. A test of hypothesis for each of the parameters

of the Pareto distribution will now be derived followed by the Union-Intersection

test for simultaneously testing those parameters. These parameters link a particular

member of the Pareto family to a particular Barabási-Albert graph. A simulation is

then conducted in order to calculate the power of the individual tests as well as the

Union-Intersection test. These methods are then applied on real world networks in an

attempt to classify them as a Barabási-Albert network. Computational methods for

bias and variance corrections are provided in order to appropriately apply the tests

of hypotheses to network data.

3.1 Test of Hypothesis for the Pareto Distribution

Given a random sample of size N from a Pareto(m,β) distribution, it is easily

shown through the likelihood function

L (m|x, β) =
∏N

i=1
mββx−β−1

i I[m,∞) (xi)

= mNββNI[m,∞)

(
x(1)

)∏N

i=1
x−β−1
i I[x(1),∞) (xi) ,

that the MLE for m is m̂MLE = x(1), and for β the MLE is

β̂MLE = N

[
N∑
i=1

ln
xi
x(1)

]−1

= N

[
ln

∏N
i=1 xi
xn(1)

]−1

.

Consider the MLE for m. Fixing β, L (m|x, β) is monotone increasing in m, but

L (m|x, β) = 0 if m > x(1), so m̂MLE = x(1) = W (x). Note that W (x) is also a

sufficient statistic for X. Assuming that the degrees X1, ..., XN are independent, the
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PDF for X(1) is

fX(1)
(x) = NfX (x) (1− FX (x))N−1

= Nmββx−β−1

(
1−

∫ x

m

αββu−β−1du

)N−1

= Nmββx−β−1

(
1−mββ

(
−1

βuβ

∣∣∣∣x
u=m

)N−1

= Nmββx−β−1

(
mβ

xβ

)N−1

= Nβx−βN−1mNβ

= mNβNβx−βN−1

⇒ fX(1)
(x) ∼ Pareto (m,Nβ) .

Now consider again L (m|x, β). The loglikelihood function is

L(m,β|
˜
x) = Nβ lnm+N ln β − (β + 1)

N∑
i=1

ln(xi)

and taking the derivative of L(m,β|
˜
x) with respect to β results in:

∂

∂β
L(β|m = x(1),

˜
x) = N lnx(1) +

N

β
−

N∑
i=1

ln(xi) ≡ 0

⇒ N

β
=

N∑
i=1

ln(xi)−N lnx(1)

⇒ β̂ =
N∑N

i=1 ln(xi)−N lnx(1)

=
N∑N

i=1 ln(xi)−
∑N

i=1 lnx(1)

=
N∑N

i=1{ln(xi)− lnx(1)}

⇒ β̂ = N

[
N∑
i=1

ln
xi
x(1)

]−1

.
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To guarantee that β̂ is an MLE the second derivative of L(m,β|
˜
x) with respect to β

must be less than zero, which it is since

∂2

∂β2
L(β|m = x(1),

˜
x) = −N

β2
< 0.

Therefore, β̂MLE = N
[∑N

i=1 ln xi
x(1)

]−1

. The MLEs will be used to derive the appro-

priate tests of hypotheses for both m and β. The tests of hypotheses will be evaluated

through consideration of their power function and determination of whether or not

the test maintained its size. The power function is defined as follows:

Definition 1 The power function of a hypothesis test on rejection region R is the

function of θ defined by P(θ) = Pθ(x ∈ R) [14]. Further, a test with power function

P(θ) is a size α test if supθ∈Θ0
P(θ) = α, for 0 ≤ α ≤ 1.

The power of each test of hypothesis was examined assuming an α = .05 level of

significance for each test.

3.1.1 Test for m.

Theorem 1 Let
˜
X be a random sample of size N from Pareto(m,β) with arbitrary

β and let x(1) be an estimate of m. Then a test on the hypothesis H0 : m ≤ m1 vs

HA : m > m1 that rejects H0 if x(1) ≥ m1/α
1
Nβ is a level α test.

Proof Let W (x) = x(1), the MLE for m and a sufficient statistic. The PDF for

X(1) was shown to be a Pareto (m,Nβ) distribution. Consider a one-sided test for a

particular value of m, call it m1, through the hypothesis H0 : m ≤ m1 vs HA : m > m1
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where β is known. Then, the likelihood ratio test (LRT) can be obtained by

λ∗ (W (x)) =
maxm1 L

∗ (m|W (x))

maxm L∗ (m|W (x))

=
mNβ

1 Nβw−βN−1

xNβ(1)Nβw
−βN−1

=

(
m1

x(1)

)Nβ

which has a rejection region of {x :λ∗ (W (x)) ≤ c} =

{
x :x(1) ≥ m1

c
1
Nβ

}
. Therefore, a

level α test where α = P
(
X(1) ≥ m1/c

1
Nβ

)
will reject H0 if

x(1) ≥ m1/α
1
Nβ . (16)

�

The power of the test on H0 : m ≤ m1 vs HA : m > m1 was computed for

m ∈ [1, 7] at increments of 0.2 for each N ∈ {2k : k = 5, 6, . . . , 15} using 1000

iterations of the test described in Equation (16) with α = 0.05. Here, m is the

smallest value possible from the Pareto random sample and k is the index used for

the sample size. A plot of the power curve is given in Figure 5 for m ∈ {2, 4, 6}.

Note that the true m1 for the Barabási-Albert graph is dependent on N for smaller

networks such that m1 = m
√

(N−m)
N

. Further, the power curve suggests that for

k ≥ 9 (k ≥ 8 for m = 2), the power of the test converges to a steady state, and the

power of the test is relatively poor for k ≤ 8 (k ≤ 7 for m = 2). In the case where

k ≤ 8 (k ≤ 7 for m = 2), the power slowly drops to α as m approaches m1 which

indicates that the TypeII error in the neighborhood of m1 is fairly high. Also, since

this is a one-sided test, as soon as m > m1, the power quickly approaches zero which

is expected. The values for the power at specific values of m are listed in Table A.1.
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Figure 5. Power curve for the test on m for top) m = 2, middle) m = 4, and bottom)
m = 6. Note:Line order from left to right represents k ∈ {5, 6, . . . , 15}, respectively.
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3.1.2 Test for β.

Theorem 2 Let
˜
X be a random sample of size N from Pareto(m,β) with arbitrary

m and define T (x) = ln
(∏

xi/x
N
(1)

)
. Then a test on the hypothesis H0 : β = β0 vs

HA : β 6= β0 that rejects H0 if

T ≤
zα
√

(N − 1) + (N − 1)

β0

or

T ≥
z1−α

√
(N − 1) + (N − 1)

β0

,

is a level α test.

Proof Let T (x) = ln
(∏

xi/x
N
(1)

)
, then the MLE for β becomes N

T
. Consider the

test for β with the hypothesis H0 : β = β0 vs HA : β 6= β0 where m is unknown.

Then, m̂ = x(1) and the LRT is

λ (x) =
maxβ0 L (β|x)

maxβ L (β|x)

=

∏
xβ0(1)β0x

−β0−1
i∏

x
N
T

(1)
N
T
x
−N
T
−1

i

=

(
β0T

N

)N (∏
xi

xN(1)

)N
T
−β0

λ (x) =

(
β0T

N

)N
eN−β0T ,

which has a rejection region of {x :λ (x) ≤ c} =
{

x :
(
β0T
N

)N
eN−β0T ≤ c

}
. This re-

jection region is decreasing in T when N
β0
≤ T and increasing when N

β0
> T . It has

been shown that 2β0T has a χ2
2(N−1) distribution [14], therefore a test that rejects H0

if

T ≤
χ2

2(N−1),α/2

2β0

or T ≥
χ2

2(N−1),1−α/2

2β0

(17)
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is a level α test.

Now consider a simple test of H0 : β = β0 vs HA : β = β1 where m is unknown.

Then, by the Neyman-Pearson Lemma, the Uniformly Most Powerful (UMP) level α

test is obtained by rejecting H0 if P
(
f(x|m,β1)
f(x|m,β0)

< d
)

= α for some d ≥ 0. Note that

f(x|m,β1)

f(x|m,β0)
=

∏
xβ1(1)β1x

−β1−1
i∏

xβ0(1)β0x
−β0−1
i

=

(
β1

β0

)N
e(β0−β1)T .

For β0 > β1 this implies

d >

(
β1

β0

)N
e(β0−β1)T

T <
ln d+N ln

(
β0
β1

)
(β0 − β1)

and for β0 < β1,

T >
ln d+N ln

(
β0
β1

)
(β0 − β1)

.

Thus, by the fact that 2β0T ∼ χ2
2(N−1), this implies E [2β0T ] = 2(N − 1) and

V ar [2β0T ] = 4(N − 1). Therefore for large N , a UMP level α test such that

α = P

(
2β0T−2(N−1)√

4(N−1)
≤ zα

)
will reject H0 if

T ≤
zα
√

(N − 1) + (N − 1)

β0

for β0 > β1

or

T ≥
z1−α

√
(N − 1) + (N − 1)

β0

for β0 < β1,

(18)

where zα is the αth percentile of the Standard Normal distribution. �
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Note that the test in Equation (18) is not dependent on the value of β1, is based on

the χ2 distribution, and is identical to the two-sided test in Equation (17). Therefore,

the two-sided test, H0 : β = β0 vs HA : β 6= β0, is identical to the simple test,

H0 : β = β0 vs HA : β = β1. It should also be noted that in cases where m is known,

the statistic T becomes ln
(∏N

i=1 xi
mN

)
and the transformation 2β0T has the distribution

of χ2
2N .

The power of the test on H0 : β = 2 vs HA : β 6= 2 for the Barabási-Albert degree

distribution was computed for β ∈ [1, 3] at increments of 0.02 for each Barabási-

Albert graph with k ∈ {5, 6, . . . , 15}. Similar to the method used for the test for m,

1000 iterations for each Barabási-Albert graph were performed at each increment of

0.02, and the proportion of rejections based on the test described in Equation (18)

were computed. A plot of the power curve for this test is given in Figure 6 with values

listed in Table 6. It is apparent from Figure 6, that the power of the test improves as

k increases. However, for a fixed k, the power curves are identical for different values

of m (Figures A.1 and A.2), implying that the power is invariant to m.

Figure 6. Power curve for the test on β. Note: Lighter shaded lines indicates smaller k
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Table 6. Power of the test for Pareto with β0 = 2 where δ = |β − β0|

k
δ 5 6 7 8 9 10 11 12 13 14 15
0 .054 .050 .049 .059 .053 .039 .054 .055 .055 .046 .047
.02 .050 .051 .047 .054 .050 .073 .078 .098 .164 .272 .446
.04 .051 .058 .052 .061 .070 .111 .155 .256 .438 .754 .956
.08 .053 .067 .054 .092 .148 .252 .487 .759 .956 1 1
.16 .062 .092 .138 .247 .464 .756 .966 1 1 1 1
.24 .128 .251 .479 .807 .972 1 1 1 1 1 1
.32 .267 .533 .876 .995 1 1 1 1 1 1 1
.64 .503 .844 .994 1 1 1 1 1 1 1 1
1 .960 .999 1 1 1 1 1 1 1 1 1

3.1.3 Union-Intersection Test.

Theorem 3 Let
˜
X be a random sample of size N from a Pareto(m,β). Let x(1) be

an MLE for m and define T = ln
(∏

xi/x
N
(1)

)
. Then a test on the hypothesis

H0 : {m ≤ m1 ∩ β ≤ β0 ∩ β ≥ β0}

HA : {m > m1 ∪ β > β0 ∪ β < β0}.

that rejects H0 if

{
x : x(1) ≥

m1

α
1

Nβ0

or T ≤
zα
√

(N − 1) + (N − 1)

β0

or T ≥
z1−α

√
(N − 1) + (N − 1)

β0

}

is a level α test.

Proof A Union-Intersection Test (UIT) can be formed if the null hypothesis can be

expressed as an intersection. In this case, test for m and β simultaneously by forming
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the hypotheses

H0 : {m ≤ m1 ∩ β = β0} = {m ≤ m1 ∩ β ≤ β0 ∩ β ≥ β0}

HA : {m > m1 ∪ β > β0 ∪ β < β0}.
(19)

Define C(x) = infγ∈{m,β} λγ(x) where λγ(x) is the LRT for the individual tests. Since

each λγ(x) is a level α test, then the UIT based on C(x) is a level α test. Therefore,

the rejection region for Equation (19) is given by

{
x : x(1) ≥

m1

α
1

Nβ0

or T ≤
zα
√

(N − 1) + (N − 1)

β0

or T ≥
z1−α

√
(N − 1) + (N − 1)

β0

}

and is a level α test. �

If PC(θ) and Pλ(θ) are the power functions for the tests based on C and λ,

respectively, then PC(θ) ≤ Pλ(θ) for every θ ∈ {(m,β)}. Hence the power of the

UIT will be bounded by the power of the individual LRTs at the specified level of

θ. Therefore, the power of the UIT at each level of θ is simply the maximum of the

power of the each individual test at the particular level. The power of the UIT can

be visualized using a surface plot with respect to (m,β,PC(θ)) on the (x, y, z) axes,

respectively.

The power of the UIT is plotted in Figures 7 to 10 for k = 5, 10 andm = 2, 4, 6 with

the associated values included in Table A.2. The power of the UIT is an improvement

over the individual tests except when it is stationary at 0.05 for β0 = 2 and when

m1 is greater than the true m. Therefore, if a given distribution is truly not from

a Pareto distribution, the probability of rejecting will be higher for β0 = 2 when

m1 is hypothesized lower than the true value, m
√

(N−m)
N

, as opposed to one that is

higher. However, if m1 is hypothesized to be the true value, it does not matter if β0

is overestimated or underestimated as it will result in roughly the same probability
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of rejection. Additionally, similar to the power of the individual tests, the power of

the UIT improves as k increases, particularly on the β0 axis. That is, for smaller k,

the combination of m1 and β0 affects the power of the test much more than when k

is large, at which point only β0 affects the power of the test.

Figure 7. Surface plot of power for the Pareto UIT for k = 5, 10 and m = 2.
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Figure 8. Surface plot of power for the Pareto UIT for k = 5, 10 and m = 4.

53



www.manaraa.com

Figure 9. Surface plot of power for the Pareto UIT for k = 5, 10 and m = 6.

3.2 Test of Hypothesis for the Barabási-Albert Network

Network data was simulated to calculate the power of each test derived in Sec-

tion 3.1 as applied to the Barabási-Albert network. A dataset comprised of degree
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k = 5 k = 10

Figure 10. Contour plot of power for the Pareto UIT for k = 5, 10 and m = 2, 4, 6, from
top to bottom, respectively. (Note: Dashed lines are true values for m1.)
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distributions of the simulated Barabási-Albert graph for various parameter and size

combinations was generated using the igraph package in R [17]. The parameter se-

lection for the simulation is listed in Table 7 where 1000 independent networks were

generated for each of the 44 combinations of graph parameter and sizes. These com-

binations were chosen so that the sizes of the networks examined spanned from small

to large, and to also study the behavior of the Barabási-Albert graphs that have

nodes with low degrees (i.e. m∗ = 1, 2, 4, 6). Note that m∗ is the value used for net-

work simulation and not to be confused with m which is a parameter of the Pareto

distribution.

Table 7. Parameters for network simulation

Parameters Size
m∗ ∈ {1, 2, 4, 6} N = 2k; k ∈ {5, 6, . . . , 14, 15}

Upon inspection of the simulated data, the evolution of the network generation

causes the degree of the nodes to be correlated to one another due to the preferrential

attachment nature of the Barabási-Albert graph. This is not unexpected as Li and

others [59] have observed that the preferential attachment model causes biases in the

structure of the graph where high degree nodes are interconnected. The correlation

causes the expected value of Z = 2β0T to be slightly biased and the variance to be

much smaller than the expected variance when compared to the χ2
2(N−1) distribution

(Figure 11). Therefore, another set of data was simulated in order to study the behav-

ior of the bias in the expected value and variance of Z. For each (m∗, k) combination,

the sample mean and variance of Z was computed from a bootstrap of 1000 iterations

and repeated 100 times resulting in a collection of 100 sample means and variances

for each combination of graph parameter and size. The ratio of the sample mean and

variance over their respective expected values, z̄
E[z]

and s2z
var[z]

, indicates that there is an
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underlying nonlinear pattern with respect to k (Figure 12). Note that, theoretically,

z̄
E[Z]

= z̄
2d.f.

and s2z
var[Z]

= s2z
4d.f.

, where d.f. stands for the degrees of freedom.

Figure 11. Empirical versus theoretical degree distribution of Z for m∗ = 2 and β0 = 2

Figure 12. Top: Ratio of
s2z

V ar[Z] versus network size. Bottom: Ratio of z̄
E[Z] versus

network size. (Note: Solid lines are the expected ratios based on the Bioexponential
and Gompertz models.)

Although there is a bias in the sample mean and variance from the empirical

distribution of 2β0T , it seems to converge as the network size increases. Furthermore,
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for each m, both the ratios, z̄
E[Z]

and s2z
V ar[Z]

, can be modeled by the 5 parameter

Biexponential and 4 parameter Gompertz models as a function of k (all R2 ≥ .99)

where z̄
E[Z]

can be modeled as

f(k) = a+ b exp{−ck}+ d exp{−hk} (20)

and s2z
V ar[Z]

can be modeled as

g(k) = a+ (b− a) exp{−exp{−c(k − d)}}. (21)

The estimates of the parameters for the correcting scalars for Equations (20) and (21)

using β0 = 2 were computed using the simulated data and are given in Table 8.

Therefore, the level α test from Equation (18) becomes

T ≤
zα
√

(N − 1)g(k) + (N − 1)f(k)

β0

for β0 > β1

or

T ≥
z1−α

√
(N − 1)g(k) + (N − 1)f(k)

β0

for β0 < β1

(22)

which rejects H0 : β = β0 for the alternative HA : β 6= β0.

Table 8. Parameter estimates for f(k) and g(k).

f(k)
m a b c d h
1 0.8653 313.24 0.6947 -313.66 0.6958
2 0.9264 2.6131 0.5890 -5.5817 0.8596
4 0.9610 3.4200 0.5532 -11.951 0.8753
6 0.9733 4.1794 0.5390 -18.966 0.8754

g(k)
a b c d

0.1168 0.1859 0.6626 4.7800
-0.1465 0.1229 0.4391 1.6905
-0.0064 0.0710 0.4558 4.9327
-0.0084 0.0503 0.4259 5.3396
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3.3 Power of the Test on m for Simulated Barabási-Albert Network

In this implementation of the test on m, the estimate x(1) will always be equal to

m∗ ∈ {1, 2, 4, 6} due to the way the Barabási-Albert network is simulated where the

smallest degree possible for any generation of the graph is m∗. This fact causes the

test to behave differently than it would have with a theoretical distribution as shown

in Section 3.1.1. Therefore, consider the test with two possible true values: m = m∗

or m = m∗
√

(n−m∗)
n

, the theoretical m for a relatively small Barabási-Albert network.

The power of the test described by Equation (16) on H0 : m ≤ m1 vs HA : m > m1 is

computed similar to the process as in Section 3.1.1, but at an increment of 0.005 for

better resolution. The power curves for the test are plotted in Figure 13 in which the

dashed vertical lines are the locations of the true m for each k ∈ {5, 6, . . . , 15} from

left to right, respectively. With m = m∗, the power curve suggests that for k ≥ 11

(k ≥ 9 for m∗ = 1 and k ≥ 10 for m∗ = 2) the power of the test converges to a steady

state similar to the general test for m in Section 3.1.1. However, the power of the test

is very poor for k ≤ 10 (k ≤ 8 for m∗ = 1 and k ≤ 9 for m∗ = 2) where the power

drops to zero even before m1 approaches m.

If m = m∗
√

(n−m∗)
n

, the test has a TypeI error of 100% for m∗ = 4, 6. Since the

dashed lines are to the left of the point where the power decreases from 100% to 0%

for m∗ = 4, 6 and k ≤ 11. This indicates that H0 will always be rejected even when

H0 is true. Therefore, when implementing the test on a simulated Barabási-Albert

network in such cases, letting m = m∗
√

(n−m∗)
n

instead of m = m∗ essentially renders

the test unusable and the latter should be used instead.

3.4 Power of the Test on β for Simulated Barabási-Albert Network

Using the appropriate values from Table 8 for H0 : β = 2 vs HA : β 6= 2, the

power of the test in Equation (22) was computed for β ∈ [1, 3] at increments of 0.02
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Figure 13. Power curve for the Barabási-Albert (BA) test on m for m∗ ∈ {1, 2, 4, 6}.
(Note: Line order from left to right represents k ∈ {5, 6, . . . , 15}, respectively.)
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for each k ∈ {5, 6, . . . , 15} similar to that of Section 3.1.2. The power curves are

plotted in Figure 15 with the actual values listed in Table 9. Again, the power of

the test improves as k increases, but unlike the general test for β from Equation (18)

and plotted in Figure 6, it is apparent that as m∗ increases, the power also improves

considerably. Another noticeable difference is that the power increases at a much

faster rate across all values of k.

Figure 14. Power curve for the test on β for m∗ ∈ {1, 2, 3, 4}. (Note: Lines converges
towards β = 2 as k increases.)

The power with the assumption that β0 = 2.16 and 2.45 was also examined where

the estimates for the correcting scalars were computed using the appropriate β0 values.
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Table 9. Power of the test for β0 = 2 where δ = |β − β0|

m∗ = 1 k
δ 5 6 7 8 9 10 11 12 13 14 15
0 .076 .063 .057 .049 .052 .049 .052 .045 .058 .049 .046
.02 .061 .062 .051 .046 .057 .091 .157 .246 .445 .751 .948
.04 .053 .055 .059 .082 .130 .270 .439 .728 .944 .999 1
.06 .052 .066 .082 .128 .266 .484 .760 .976 1 1 1
.08 .056 .079 .132 .211 .441 .707 .940 .998 1 1 1
.1 .062 .095 .189 .322 .603 .874 .993 1 1 1 1
.2 .167 .331 .592 .862 .986 1 1 1 1 1 1
.3 .357 .610 .885 .988 1 1 1 1 1 1 1
.4 .566 .855 .979 .999 1 1 1 1 1 1 1

m∗ = 2 k
δ 5 6 7 8 9 10 11 12 13 14 15
0 .045 .039 .05 .045 .044 .043 .032 .048 .05 .043 .054
.02 .048 .067 .055 .065 .097 .13 .22 .39 .675 .92 .996
.04 .062 .078 .109 .153 .235 .408 .702 .932 1 1 1
.06 .085 .11 .161 .275 .473 .729 .947 .999 1 1 1
.08 .115 .177 .246 .444 .704 .917 .999 1 1 1 1
.1 .172 .233 .398 .633 .876 .983 1 1 1 1 1
.2 .539 .747 .899 .991 1 1 1 1 1 1 1
.3 .853 .957 .995 1 1 1 1 1 1 1 1
.4 .976 .995 1 1 1 1 1 1 1 1 1

m∗ = 4 k
δ 5 6 7 8 9 10 11 12 13 14 15
0 .037 .044 .042 .049 .048 .048 .055 .054 .05 .056 .049
.02 .066 .071 .075 .097 .142 .246 .396 .665 .915 .992 1
.04 .101 .136 .177 .252 .446 .697 .914 .997 1 1 1
.06 .195 .256 .36 .554 .777 .952 .998 1 1 1 1
.08 .326 .391 .563 .744 .94 .996 1 1 1 1 1
.1 .448 .572 .771 .913 .991 1 1 1 1 1 1
.2 .95 .981 .999 1 1 1 1 1 1 1 1
.3 .998 1 1 1 1 1 1 1 1 1 1
.4 1 1 1 1 1 1 1 1 1 1 1

m∗ = 6 k
δ 5 6 7 8 9 10 11 12 13 14 15
0 .057 .053 .052 .051 .042 .044 .059 .05 .054 .045 .039
.02 .073 .081 .109 .127 .198 .341 .55 .827 .98 1 1
.04 .193 .209 .284 .416 .632 .837 .982 .999 1 1 1
.06 .4 .424 .567 .749 .926 .989 1 1 1 1 1
.08 .604 .644 .773 .923 .997 1 1 1 1 1 1
.1 .792 .821 .922 .986 .999 1 1 1 1 1 1
.2 .999 1 1 1 1 1 1 1 1 1 1
.3 1 1 1 1 1 1 1 1 1 1 1
.4 1 1 1 1 1 1 1 1 1 1 1

However, for each detectable difference, |β − β0|, the resulting power did not differ

from that observed when β0 = 2 which suggests that the power of the test is invariant

of the hypothesized β0 (Figure 15). This implies that regardless of the true exponent

of the degree distribution of the Barabási-Albert network, the proposed test is able
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to determine a given network as Barabási-Albert if the transformation of the degree

distribution, 2β0T , under the assumed β0 follows that of the corrected transformation

of the Barabási-Albert test as in Equation (22).

Figure 15. Power curve for the test with β = 2.16 and β = 2.45 for m∗ = 2. (Note: Lines
converges towards β = 2 as k increases.)

3.5 Power of the Union-Intersection test for Simulated Barabási-Albert

Network

The power of the UIT for Barabási-Albert networks is an improvement over the

individual tests except where it is stationary at 0.05 for when β0 = 2 and m1 is greater

than the true value (Figure 16). However, since the degree distribution is discrete,

the value of m1 is set to equal to m∗ instead of m∗
√

(N−m∗)
N

because the former is the

smallest value that will be observed. Additionally, due to the tighter variance of the

empirical distribution of Z, the power improves much faster when compared to the

unadjusted UIT test for Pareto parameters in Section 3.1.3. The power also varies

with respect to the value of m∗ similar to the power of the individual test on β where

higher power is observed for larger values of m∗. Interestingly, Figure 16 shows that

if β0 = 2 is hypothesized for a non-Barabási-Albert network, then a misspecification

of m1 that is lower than the true value of m will result in a higher probability of
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Figure 16. Contour plot of the power for the Barabási-Albert UIT for k = 5, 7, 11 from
left to right, respectively, and m∗ = 1, 2, 4, 6 from top to bottom, respectively. (Note:
Dashed lines are theoretical values for m1.)
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rejection than an overspecification of m1. However, if the hypothesized m1 is equal

to the true value, then it does not matter if β0 is misspecified as it will result in the

same probability of rejection. Additionally, similar to the power of the individual

tests, the power of the UIT improves as k increases particularly on the β0 axis. The

values for the power of the UIT are included in Table A.3.

3.6 Real World Network Classification

To study the usability of the tests derived in this chapter, classifications on real

world datasets are performed in order to see if there are real world networks that

may be represented as a Barabási-Albert network based on the degree distribution.

Although it is well known that the Barabási-Albert graph models the evolution of a

graph that follows the preferential attachment property and is a scale free graph, the

converse relationship is less studied. In other words, are there any real world networks

that can be represented as a Barabási-Albert network? The datasets compiled are

comprised of networks that are believed to be scale free from a variety of fields and also

varies in terms of sizes that are available in the literature (Table 10). The datasets

were collected by Newman [71] and Leskovec and Krevl [56]. It should be noted that

all networks were treated as undirected networks for the analysis.

The UIT from Section 3.5 was then used to test whether or not the degree distri-

bution from a given network is significantly different from that of a Barabási-Albert

network of the same size. It is hypothesized that m1 = 1 since it is the lowest theo-

retical value of the degree in a connected graph, and it is hypothesized that β0 = 2

which is the theoretical value for a Barabási-Albert network. The results shows that

the networks have parameter values that are significantly different than the values as-

sociated with a Barabási-Albert representation (Table 11). The large z-statistic (the

z|m1 = 1 column) and small p-value
(
compared to zα/2=.025 = 1.96

)
for each network
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Table 10. Real world data description.

Network Brief Description Type k : N = 2k Reference

Karate Club
Social network of
friendships

Undirected 5.0875 Zachary [102]

Les Miserables
Coappearance of Les
Miserables characters

Undirected 6.2668 Knuth [48]

Dolphin Social
Network

Social network of
dolphins

Undirected 5.9542
Lusseau and
others [60]

Political Blogs
Hyperlinks between US
politics weblogs

Directed 10.5411
Adamic and
Glance [3]

Condensed Matter
Collaborations

Coauthorships between
scientists

Undirected 15.3028 Newman [69]

Astrophysics
Collaborations

Coathorships between
scientists

Undirected 14.0281 Newman [69]

High-Energy Theory
Collaborations

Coauthorships between
scientists

Undirected 13.0295 Newman [69]

High-Energy Physics
Theory Citations

Network of paper
citations

Directed 14.7612

Gehrke and
others [27],
Leskovec and
others [55]

High-Energy Physics
Phenomenology
Citations

Network of paper
citations

Directed 15.0762

Gehrke and
others [27],
Leskovec and
others [55]

Internet Internet structure Undirected 14.4870 Newman [71]

Google Webgraphs
Network of hyperlinks
between webpages

Directed 19.7401
Leskovec and
others [57]

Facebook Social
Circles

Social network of
friendships

Undirected 11.97978
McAuley and
Leskovec [63]

suggests that the degrees of the networks are larger than what is expected from a

Barabási-Albert network. Additionally, under the assumption that the degree distri-

bution of the networks is the Pareto distribution, the β̂MLE estimates obtained are

well below the β0 = 2 assumption for Barabási-Albert network, where the closest

estimate was found for the Internet dataset with β̂MLE = 1.4351.

The UIT was then reapplied for further investigation by hypothesizing that m1 ∈

{2, 4, 6} instead of m1 = 1. However, since m1 is the lower bound of the support for

the distribution, this results in degree values that are outside of the support which will

cause T , and consequently the random variable Z = 2β0T , to be biased. Therefore,

the UIT on this set of m1 needs to be performed on the truncated degree distribution
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which essentially reduces the original network to a “sub-network” that is associated

with the truncated degree distribution. This sub-network contains the main “hubs”

of the original network that connect the entire network. In essence, it becomes a

test of the network remaining central nodes. Applying the UIT to the sub-networks

resulted in the Les Miserables and Dolphin Social Network to not differ significantly

from a Barabási-Albert network with m1 = 6 and m1 = 4, respectively, each having

a z-statistic greater than −1.96 (−1.024 and −1.212, respectively (Table 11)).

However, by removing the periphery nodes, the resulting sub-networks only ac-

count for 53% and 66% of the original Les Miserables and Dolphin Social Network

networks, respectively. As shown in Figure 17, a substantial proportion of the degree

distribution is spread out further to the right of the degree axis than is expected

from a Pareto(m1 = 1, β0 = 2) distribution (red). Note that when comparing the

truncated distributions to their respective Pareto distributions (blue), the degrees

seem to follow characteristics of the Pareto distribution much better. This result

suggests that even though a network might be significantly different than a Barabási-

Albert network based on its degree distribution, the sub-network, which contains the

central hubs of the original network, could still possess characteristics similar to the

Barabási-Albert network and be used for visualization and study.
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Table 11. z-statistic and β̂MLE for real world networks.

Network N z|m1 = 1∗ β̂MLE zbest|m1
† sub-net %

Karate Club 34 25.25 0.7809 7.994|2 97
Les Miserables 77 43.55 0.6911 -1.024|6 53
Dolphin Social Network 62 38.07 0.7085 -1.212|4 66
Political Blogs 1224 322.67 0.4147 300.90|6 68
Cond Matter
Collaborations

39577 1131.38 0.6022 274.76|6 14

Astrophysics
Collaborations

16046 932.11 0.4948 520.10|6 57

High-Energy Physics
Theory Collaborations

7610 251.54 0.9481 -16.27|6 22

High-Energy Physics
Theory Citations

27770 1647.09 0.3896 1059.30|6 76

High-Energy Physics
Phenomenology Citations

34546 1904.60 0.3780 1151.31|6 81

Internet 22963 185.33 1.4351 -70.21|2 66
Google Webgraphs 875713 5721.48 0.5703 2427.05|6 52
Facebook Social Circles 4039 807.92 0.3153 649.35|6 89

∗All p-values are < 0.0001.
†: Bold indicates not significantly different from Barabási-Albert network. z|m1 = 1 is the z-score
when m1 is assumed to be 1, and zbest|m1 is the smallest absolute z-score given the associated m1

assumption.

Figure 17. Historgram of degree distributions for Les Miserables and Dolphins and
compared to the Barabási-Albert distribution with m1 = 1 (red) and distribution with
m1 = 6 and m1 = 4 (blue) for left and right, respectively.
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IV. Network Degradation Detection

The second primary objective of this research is to create a test of hypothesis to

detect subtle degradation within a Barabási-Albert network attributable to nodal or

edge deletion. For this research, degradation is defined as removal of the nodes or

edges within the network that changes the structure of the network and its degree

distribution. To achieve this objective, L-moments from the degree distribution of the

Barabási-Albert network are used for creating a multivariate test of hypothesis. This

is then followed by an analysis on the sensitivity of the test to changes within the

network based on proportion of edge and nodal deletion to investigate how quickly

the test rejects a degrading Barabási-Albert network.

4.1 Empirical Distribution for the L-moments of the Barabási-Albert De-

gree Distribution

In order to utilize the L-moments as statistical measures for identifying or char-

acterizing a network, their distributions with respect to degree distribution first need

to be identified, so that a statistical test of hypothesis can be created. This work

examines a nonparametric approach to deriving the theoretical distribution of the

L-moments for the Barabási-Albert degree distribution. Due to the graph theoretic

property of the Barabási-Albert network, the mean degree for a fixed (m, k) pair is

also fixed since the mean degree is a function of the total degree which was shown

to be deterministic in Section 2.2.1. Therefore only the empirical distributions of

the of the L-scale (λ2), L-skewness (τ3), and L-kurtosis (τ4) of the Barabási-Albert

degree distribution are simulated since Hosking [40] suggested that a distribution can

be well characterized by including up to the fourth L-moment. The simulation was

conducted as followed:
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1. Bootstrap each L-moment distribution from 1000 randomly generated Barabási-

Albert graphs for each m ∈ {2, 4, 6} and n ∈ {2k : k = 5, 6, . . . , 15} parameter

combination.

2. Test each distribution for normality using the Shapiro-Wilk and Anderson-

Darling tests for univariate normality of the marginals, and using the Royston H

test [80] which is a multivariate extension on the Shapiro-Wilk for multivariate

normality of the joint distributions.

3. Repeat step 1-2 100 times to obtain the proportion of instances where the L-

moment distributions are no different than a normal distribution.

4. Compare results of step 3 to that expected at α = .05 level.

Hosking [40] also suggested considering the pairwise combination of L-skewness

and L-kurtosis of a distribution in characterizing the distribution from which the L-

moments came. The expected λ2, τ3 and τ4 of the Generalized Pareto distribution were

derived by Hosking [40] and the expected τ3 and τ4 relationship is shown in Figure 18

along with the pairwise empirical L-skewness and L-kurtosis of the Barabási-Albert

network. Also included in Figure 18 is the empirical distribution of the L-skewness and

L-kurtosis from the Pareto(m, 2) distribution where the sample size corresponds to

the network sizes of the Barabási-Albert sampling. Overall, although the L-moments

of the Barabási-Albert degree distribution converge towards the expected (τ3, τ4) val-

ues of the Pareto distribution (point labeled “2” on the Generalized Pareto [Gen

Pareto] line in Figure 18), the distributions of the L-moments themselves do not

lie on the line of expected values for the Pareto distribution. Another observation

is that the separation of the L-moments distribution between the different network

sizes becomes more prominent as m increases.

One can then argue that the empirical degree distribution of the Barabási-Albert
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graph is different than what was theoretically derived by Barabási and Albert [6]

at least for relatively small graphs. Further, it is also apparent that the (τ3, τ4)

pair may have a bivariate distribution which resembles that of a normal distribution

(Figure 18). Therefore, the marginal as well as the joint distributions distributions of

the L-moments are tested for normality using the Shapiro-Wilk and Anderson-Darling

test for the marginals and the Royston H test for the joint distributions.

Based on the results, it was shown that none of the distributions of λ2 and τ4 differ

significantly from the normal distribution although it appears that the distributions

for τ3 when k ≤ 8 are significantly different from the normal distribution (Table 12).

The histogram of the L-moments for k ∈ {6, 15} are shown in Figures 19 and 20

where it appears that the normal distribution overlaps the empirical L-moment dis-

tributions quite fittingly even for τ3. The multivariate normality test on the joint

distributions suggests that the non-normality of τ3 seems to affect whether or not the

joint distributions are significantly different from the multivariate normal (Table 13).

Specifically, it seems that when τ3 is part of the joint distribution and k ≤ 6, said

joint distribution is significantly different from the multivariate normal more often

than when τ3 is not part of the joint distribution. Nevertheless, the proportion of the

sample where the univariate and multivariate distributions involving τ3 for k ≥ 6 is

not significantly different than normal is in the large majority (� 0.5), thus it will

be included in the investigation for selecting the appropriate L-moments for the test

of hypothesis.

All 100 empirical distributions of each L-moment are then compiled together into

one distribution of 105 random samples to obtain a larger bootstrapped L-moment dis-

tribution. From the 105 random sample, the mean and covariance structure between

the L-moments are estimated which are listed in Tables B.4 and B.5. The estimates

are then used to standardize the L-moments and to transform them into the mul-
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Figure 18. Plot of τ3 vs τ4 for m = 2, 4, 6 of the Barabási-Albert (BA) degree distribution
and the Pareto distribution. (Note: Colors distinguish k = 5 (large spread) to k = 15
(small spread). Points are expected (τ3, τ4) values for the associated β values for the
Generalized Pareto (Gen Pareto) and Generalized Extreme Value (GEV) distributions.
Exp is the expected (τ3, τ4) for the Exponential distribution.)

tivariate standard normal distribution which minimizes the correlation between the

L-moments. The transformed multivariate normal distribution will be used to cre-

ate a statistical test of hypothesis on the values of these L-moments to be used to

differentiate between various Barabási-Albert networks.
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Table 12. Proportion where distribution of L-moments are not significantly different
from the normal distribution

λ2 τ3 τ4

k m SW AD SW AD SW AD

5 2 0.93 0.97 0.40 0.58 0.89 0.88

5 4 0.92 0.94 0.43 0.54 0.83 0.94

5 6 0.96 0.96 0.65 0.77 0.84 0.87

6 2 0.90 0.97 0.66 0.80 0.90 0.91

6 4 0.94 0.92 0.62 0.78 0.93 0.92

6 6 0.91 0.97 0.7 0.78 0.89 0.91

7 2 0.90 0.92 0.74 0.85 0.89 0.95

7 4 0.99 1.00 0.83 0.88 0.96 0.99

7 6 0.89 0.95 0.84 0.86 0.91 0.92

8 2 0.94 0.95 0.92 0.94 0.94 0.98

8 4 0.92 0.94 0.87 0.89 0.92 0.93

8 6 0.97 0.98 0.88 0.92 0.95 1.00

9 2 0.92 0.93 0.87 0.87 0.96 0.98

9 4 0.94 0.94 0.91 0.97 0.93 0.97

9 6 0.97 0.97 0.94 0.97 0.98 0.96

10 2 0.95 0.97 0.95 0.98 0.97 0.94

10 4 0.94 0.97 0.95 0.95 0.95 0.97

10 6 0.98 0.96 0.94 0.96 0.94 0.96

11 2 0.94 0.97 0.97 0.96 0.94 0.92

11 4 0.97 0.95 0.92 0.93 0.95 0.98

11 6 0.94 0.93 0.90 0.93 0.95 0.97

12 2 0.94 0.98 0.94 0.96 0.98 0.94

12 4 0.96 0.93 0.94 0.94 0.96 0.97

12 6 0.95 0.96 0.97 0.98 0.94 0.93
SW: Shapiro-Wilks, AD: Anderson-Darling tests for normality.

4.2 Multivariate Standard Normal Distribution in Polar Coordinates

A transformation of the bivariate and trivariate normal distribution from the

Cartesian coordinate to the polar coordinate will now be demonstrated. This is

performed in order to transform the multivariate L-moments collection into a single

value (radius) that can be used as a criteria for the test of hypothesis. Let X and Y be

independent and identically distributed (iid) Normal(0, 1) and let R =
√
X2 + Y 2.
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Table 13. Proportion where multivariate distribution of L-moments are not significantly
different from the multivariate normal distribution based on the Royston H-test

k m λ2, τ3 λ2, τ4 τ3, τ4 λ2, τ3, τ4

5 2 0.48 0.69 0.49 0.49
5 4 0.49 0.86 0.48 0.57
5 6 0.64 0.81 0.58 0.65
6 2 0.76 0.87 0.83 0.82
6 4 0.61 0.85 0.7 0.68
6 6 0.80 0.94 0.79 0.83
7 2 0.84 0.91 0.88 0.87
7 4 0.89 0.91 0.91 0.90
7 6 0.87 0.95 0.89 0.88
8 2 0.91 0.93 0.94 0.91
8 4 0.93 0.93 0.92 0.92
8 6 0.85 0.89 0.89 0.87
9 2 0.92 0.97 0.93 0.92
9 4 0.94 0.92 0.95 0.94
9 6 0.88 0.92 0.91 0.89
10 2 0.93 0.91 0.91 0.90
10 4 0.92 0.91 0.92 0.88
10 6 0.95 0.94 0.96 0.94
11 2 0.87 0.91 0.89 0.90
11 4 0.95 0.93 0.94 0.94
11 6 0.91 0.89 0.95 0.90
12 2 0.98 0.96 0.95 0.96
12 4 0.92 0.90 0.93 0.92
12 6 0.98 0.97 0.96 0.97

Now, find the value of c such that P (R >
√
c) = α. The joint density of (X, Y ) is

fX,Y (x, y) =
1√
2π
e−

x2

2
1√
2π
e−

y2

2

=
1

2π
e−

x2+y2

2 .
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Figure 19. Example histograms of L-moments for m = 2 k = 6

Let X = R cos Θ and Y = R sin Θ. Then,

X2 + Y 2 = (R cos Θ)2 + (R sin Θ)2

= R2 cos2 Θ +R2 sin2 Θ

= R2(cos2 Θ + sin2 Θ)

X2 + Y 2 = R2.
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Figure 20. Example histograms of L-moments for m = 2 k = 15

Consequently, the Jacobian is

J =

∣∣∣∣∣∣∣
∂
∂r
r cos θ ∂

∂θ
r cos θ

∂
∂r
r sin θ ∂

∂θ
r sin θ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣∣
= r cos2 θ + r sin2 θ

J = r.
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Therefore the joint density of (R,Θ) is

fR,Θ(r, θ) =
r

2π
e−

r2

2

where r ∈ [0,∞) and θ ∈ [0, 2π). Thus, the value of c such that the probability of

the marginal of R, P (R >
√
c) = α, is

1− α = P (R ≤
√
c)

=

∫ √c
0

∫ 2π

0

r

2π
e−

r2

2 dθdr

1− α =

∫ √c
0

re−
r2

2 dr.

Letting s = −r2/2, then ds = −rdr and

1− α =

∫ 0

−c/2
esds

= 1− e−c/2

α = e−c/2

lnα = −c/2

c = −2 lnα.

Extending the previous derivation to include a third variable Z that is also iid

Normal(0, 1), the joint density of (X, Y, Z) then becomes

fX,Y,Z(x, y, z) =
1√
2π
e−

x2

2
1√
2π
e−

y2

2
1√
2π
e−

z2

2

=
1

(2π)3/2
e−

x2+y2+z2

2 .
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However, now let X = R sin Θ cos Φ, Y = R sin Θ sin Φ, and Z = R cos Θ which gives

X2 + Y 2 + Z2 = (R sin Θ cos Φ)2 + (R sin Θ sin Φ)2 + (R cos Θ)2

= R2 sin2 Θ cos2 Φ +R2 sin2 Θ sin2 Φ + cos2 Θ

= R2(sin2 Θ cos2 Φ + sin2 Θ sin2 Φ + cos2 Θ)

X2 + Y 2 + Z2 = R2,

and the Jacobian,

J =

∣∣∣∣∣∣∣∣∣∣
∂
∂r
r sin θ cosφ ∂

∂θ
r sin θ cosφ ∂

∂φ
r sin θ cosφ

∂
∂r
r sin θ sinφ ∂

∂θ
r sin θ sinφ ∂

∂φ
r sin θ sinφ

∂
∂r
r cos θ ∂

∂θ
r cos θ ∂

∂φ
r cos θ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

∣∣∣∣∣∣∣∣∣∣
= 0 + r2 cos2 θ sin θ cos2 φ+ r2 sin3 θ sin2 φ

+ r2 cos2 θ sin θ sin2 φ− 0 + r2 sin3 θ cos2 φ

= r2 sin θ(cos2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ sin2 φ+ sin2 θ cos2 φ)

= r2 sin θ(cos2 θ + sin2 θ)(cos2 φ+ sin2 φ)

J = r2 sin θ.

Hence, the joint density of (R,Θ,Φ) is

fR,Θ,Φ(r, θ, φ) =
r2 sin θ

(2π)3/2
e−

r2

2

where r ∈ [0,∞), θ ∈ [0, π], and φ ∈ [0, 2π). The value of c for the marginal of R
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such that P (R >
√
c) = α is

1− α = P (R ≤
√
c)

=

∫ √c
0

∫ π

0

∫ 2π

0

r2 sin θ

(2π)3/2
e−

r2

2 dφdθdr

=

∫ √c
0

∫ π

0

r2 sin θ√
2π

e−
r2

2 dθdr

=

∫ √c
0

r2

√
2π
e−

r2

2

∫ π

0

sin θdθdr

=

∫ √c
0

r2

√
2π
e−

r2

2 (− cos θ|πθ=0 dr

=

∫ √c
0

2r2

√
2π
e−

r2

2 dr

=

√
2

π

∫ √c
0

r2e−
r2

2 dr

=

√
2

π

(
1

4

√
π

(1/2)3
erf (r

√
1/2)− r

2(1/2)
e−r

2/2

∣∣∣∣
√
c

r=0

=

√
2

π

(
1

4

√
8π erf

(√
c

2

)
−
√
ce−c/2

)
1− α = erf

(√
c

2

)
−
√

2c

π
e−c/2

α = 1− erf

(√
c

2

)
+

√
2c

π
e−c/2.

Therefore, to obtain the value of c for a particular α, one must numerically find the

closest c that satisfies P (R >
√
c) = α. Table 14 lists the values of c for select α values.

From these result, one can now simultaneously test pairwise and triple combinations

of standardized L-moments against their respective multivariate standard normal

distribution.
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Table 14. Values of c such that P (R >
√
c) = α for the multivariate normal distribution

α c
0.010 11.3449
0.025 9.3484
0.050 7.8147
0.100 6.2514
0.150 5.3171
0.200 4.6416

4.3 Tests on Degree L-moments for the Barabási-Albert Network

Three tests using the L-moments of the degree distribution of a Barabási-Albert

network are proposed that are based on the Standard Normal univariate distribution

as well as the Multivariate Standard Normal distribution as described in Section 4.2.

The tests are built upon the hypothesis H0 :
˜
λ ∈ Λ(m,k) vs HA :

˜
λ /∈ Λ(m,k) where

˜
λ is

the collection of L-moment estimates for a given network and Λ(m,k) is the empirical

distribution of the L-moments with a mean and covariance structure (
˜
µ,Σ) for a

Barabási-Albert graph of size k with parameter m as estimated in Section 4.1 and

listed in Tables B.4 and B.5. Consider the standardized
˜
λ as

˜
t = Σ−

1
2 (

˜
λ −

˜
µ)′, and

define the test statistic

S = ‖
˜
t‖2.

Thus, for a given α level for the TypeI error, a test of H0 :
˜
λ ∈ Λ(m,k) vs HA :

˜
λ /∈

Λ(m,k) will reject H0 if

S ≥
√
c (23)

where c is defined in Section 4.2 and provided for specific α values in Table 14. Note

that for the univariate case, the rejection criterion is equivalent to the univariate
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standard normal distribution, where H0 is rejected if

S ≤ zα/2 or S ≥ z1−α/2. (24)

4.4 Power of the Tests on Degree L-moments

In order to develop a test that is able to detect degradation within the degree

distribution of a Barabási-Albert network, it is a necessary condition for the test to

first be able to correctly classify the networks with high power. Recall that the test of

normality on the L-moments in Section 4.1 showed that the distribution of L-scale (λ2)

was no different than a normal distribution in roughly 90% of the samples or higher.

However, the opposite could be said for L-skewness (τ3) where the distribution of τ3

was shown to be no different than a normal distribution for only a small proportion

of the samples when k ≤ 8 despite the joint distributions of the L-moments not being

significantly different from the multivariate normal for smaller k. Therefore, the power

of the test based on Equations (23) and (24) using L-scale (λ2), L-skewness (τ3), and

L-kurtosis (τ4), as well as their bivariate and trivariate distributions is investigated.

For each m and k combination, a Barabási-Albert network is generated and as-

signed as the target network. Then its degree distribution, λ2, τ3, and τ4 are computed

and compared to that of the estimated distributions from Section 4.1 which are des-

ignated as the class networks. If the statistic for the target, as defined in Section 4.3,

falls within the rejection region, then the network will be rejected from being assigned

to the class network. These steps are outlined in Algorithm 1. The false negative

and true negative counts are aggregated to compute the TypeI error and power of

the tests for each (target, k) pair, respectively.

The simulation shows that the tests with rejection region from Equations (23)

and (24) maintained the appropriate α = 0.05 level for all m (Tables 15 to 18).
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Algorithm 1 L-moments classification algorithm

1: procedure Classify
2: for each target ∈ {1, 2, . . . , 7} do
3: for each class ∈ {1, 2, . . . , 7} do
4: for each k ∈ {5, 6, . . . , 14} do
5: for each boot ∈ {1, . . . , 1000} do
6: g ← Generate a Barabási-Albert network with m = target

and random seed boot
7: d← Compute degree distribution of g
8: lmomtarget,k ← Compute (λ2, τ3, τ4) of d
9: normlm ← Normalize lmomtarget,k with (

˜
µclass,k,Σclass,k)

from Tables B.4 and B.5
10: R← statistic based on dimension of normlm
11: c← critical value based on alpha and dimension of normlm
12: if target = class then
13: if R > c then
14: return FALSE NEGATIVE
15: else
16: return TRUE POSITIVE
17: end if
18: else if target 6= class then
19: if R > c then
20: return TRUE NEGATIVE
21: else
22: return FALSE POSITIVE
23: end if
24: end if
25: end for
26: end for
27: end for
28: end for
29: end procedure
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The test is also shown to be quite powerful when only considering λ2 as a statistic

for classification, where it is able to correctly reject when target 6= class with a

probability of one for k ≥ 7. However, the power of the test for k ≤ 6 could be

improved upon by the multivariate addition of τ3 and τ4 as shown in Tables 15

to 18, despite the test being more prone to misclassification for m ≥ 4 when k = 5.

Nevertheless, the trivariate test on (λ2, τ3, τ4) was able to improve the power of the

test for these values of m and k (m ≥ 4 and k = 5).

One implication that can be made from the network classification result of using

the L-moments is that the tests are, in essence, tests for detecting changes within

the degree distribution with respect to m. Thus, should the network behave in such

a way to cause its degree distribution to deviate from the initial network with a

particular minimum degree (m), then the trivariate test is especially powerful in

detecting such a change, even for smaller networks. However, it is worth noting

that the change in m (the minimum degree) is discrete and has very low resolution.

Therefore, the performance of the test needs to be evaluated with respect to a more

sensitive change within the network. Hence, the trivariate test will be chosen as the

one to use for change detection since it is very sensitive to the perturbation within

the degree distribution of the Barabási-Albert network due to the combination of

the L-moments. However, the univariate test on λ2 is also used as a baseline for

comparison since there are no concerns with non-normality for λ2, and a test on λ2

may be considered parsimonious.

4.5 Sensitivity Analysis of Edge and Node Deletion

For detecting how sensitive the test described in Section 4.4 is with respect to nodal

or edge deletion within the Barabási-Albert network, the network is degraded at three

levels of nodal degrees: 1) nodes with minimum degree m (low degree), 2) nodes with
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Table 15. Power of the test using only λ2

k = 5 Class
Target 1 2 3 4 5 6 7

1 0.049 1 1 1 1 1 1
2 1 0.054 1 1 1 1 1
3 1 0.997 0.050 0.927 1 1 1
4 1 1 0.929 0.048 0.680 0.988 1
5 1 1 1 0.702 0.047 0.394 0.846
6 1 1 1 0.985 0.468 0.042 0.234
7 1 1 1 0.999 0.856 0.226 0.049

k = 6 Class
Target 1 2 3 4 5 6 7

1 0.047 1 1 1 1 1 1
2 1 0.037 1 1 1 1 1
3 1 1 0.041 1 1 1 1
4 1 1 1 0.048 0.999 1 1
5 1 1 1 0.999 0.045 0.980 1
6 1 1 1 1 0.975 0.058 0.947
7 1 1 1 1 1 0.935 0.056

Table 16. Power of the test using (λ2, τ3) jointly

k = 5 Class
Target 1 2 3 4 5 6 7

1 0.062 1 1 1 1 1 1
2 1 0.06 1 1 1 1 1
3 1 1 0.037 1 1 1 1
4 1 1 1 0.054 0.999 1 1
5 1 1 1 0.994 0.058 0.951 1
6 1 1 1 1 0.926 0.05 0.779
7 1 1 1 1 1 0.761 0.045

k = 6 Class
Target 1 2 3 4 5 6 7

1 0.046 1 1 1 1 1 1
2 1 0.048 1 1 1 1 1
3 1 1 0.038 1 1 1 1
4 1 1 1 0.044 1 1 1
5 1 1 1 1 0.047 1 1
6 1 1 1 1 1 0.047 1
7 1 1 1 1 1 1 0.056

degree equal to the median degree (medium degree), and 3) nodes with degree in the

top 1% of the network (high degree). For each level of degree, an investigation on how
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Table 17. Power of the test using (λ2, τ4) jointly

k = 5 Class
Target 1 2 3 4 5 6 7

1 0.049 1 1 1 1 1 1
2 1 0.048 1 1 1 1 1
3 1 0.999 0.049 0.958 1 1 1
4 1 1 0.949 0.061 0.661 0.995 1
5 1 1 1 0.734 0.064 0.399 0.89
6 1 1 1 0.99 0.425 0.056 0.248
7 1 1 1 1 0.859 0.218 0.044

k = 6 Class
Target 1 2 3 4 5 6 7

1 0.049 1 1 1 1 1 1
2 1 0.045 1 1 1 1 1
3 1 1 0.04 1 1 1 1
4 1 1 1 0.049 1 1 1
5 1 1 1 1 0.046 0.99 1
6 1 1 1 1 0.981 0.048 0.964
7 1 1 1 1 1 0.948 0.055

Table 18. Power of the test using (λ2, τ3, τ4) jointly

k = 5 Class
Target 1 2 3 4 5 6 7

1 0.077 1 1 1 1 1 1
2 1 0.069 1 1 1 1 1
3 1 1 0.054 1 1 1 1
4 1 1 1 0.068 1 1 1
5 1 1 1 1 0.067 1 1
6 1 1 1 1 0.997 0.049 0.989
7 1 1 1 1 1 0.948 0.051

k = 6 Class
Target 1 2 3 4 5 6 7

1 0.065 1 1 1 1 1 1
2 1 0.053 1 1 1 1 1
3 1 1 0.052 1 1 1 1
4 1 1 1 0.056 1 1 1
5 1 1 1 1 0.058 1 1
6 1 1 1 1 1 0.07 1
7 1 1 1 1 1 1 0.048

the test reacts to both edge deletion and node deletion by varying the proportion of

deletion p ∈ {0.01, 0.02, . . . , 0.1, 0.15, 0.2, 0.3, 0.4, 0.5} is conducted. The algorithms
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for both methods of deletion are outlined in Algorithms 2 and 3. Algorithms 2 and 3

are then used within Algorithm 4 to compute the power of the test as a function of

p for each (m, k) combination. In essence, the power of the test is computed for each

target by deleting edges or nodes with the appropriate p and seeing how well the tests

with rejection region from Equation (23) rejects the target from each class. Note that

for node deletion, deleting a particular node has the consequence of deleting all edges

connected to said node. However, the resulting number of edges deleted by the two

different processes are equivalent for low and medium degree nodes. Suppose that only

nodes with degree equal to d are affected and suppose that the probability of deletion

is p. Let ν be the number of nodes with degree equal to d. Thus, for edge deletion,

the number of edges affected is ev = νd and the number of edges deleted is evp = νdp.

Similarly, the number of nodes deleted for node deletion is v1 = νp and the number

of edges affected is v1d = νpd. Therefore, the difference between edge deletion and

node deletion then becomes the subtle distinction of whether the edges are deleted

randomly out of all affected edges or whether the edges are deleted randomly albeit

in a more concentrated fashion as a function of node selection. However, the number

of edges deleted becomes more stochastic for high degree level since the degrees of

the affected nodes vary.

4.5.1 Edge Deletion.

Characteristics of Edge Deletion.

The characteristics of the network in terms of resulting isolates, components,

and the network’s clustering coefficient with respect to the deletion process are first

investigated. Isolates are any nodes with degree zero resulting from the deletion

process, and components are disconnected subgraphs that are themselves connected

which resulted from the deletion process. It should be noted that when the minimum
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Algorithm 2 Edge deletion algorithm

1: procedure EdgeDeletion
2: g ← Barabási-Albert network
3: degree← degree distribution of g
4: delType← low, medium, or high degree levels
5: p← proportion of deletion
6: if delType = low then
7: v ← all nodes with degree = min{degree}
8: else if delType = medium then
9: v ← all nodes with degree = median{degree}

10: else if delType = high then
11: v ← all nodes with degree ≥ 99th percentile of degree distribution
12: end if
13: ev ← all edges connected to v
14: e← randomly selected ev with probability p
15: remove e from g
16: remove any isolates (i.e. nodes with degree zero) from g
17: end procedure

Algorithm 3 Node deletion algorithm

1: procedure NodeDeletion
2: g ← Barabási-Albert network
3: degree← degree distribution of g
4: delType← low, medium, or high degree levels
5: p← proportion of deletion
6: if delType = low then
7: v ← all nodes with degree = min{degree}
8: else if delType = medium then
9: v ← all nodes with degree = median{degree}

10: else if delType = high then
11: v ← all nodes with degree ≥ 99th percentile of degree distribution
12: end if
13: v1 ← randomly selected v with probability p
14: remove v1 from g
15: remove any isolates (i.e. nodes with degree zero) from g
16: end procedure
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Algorithm 4 L-moments change detection algorithm

1: procedure DetectChange
2: delType← degree levels low, medium, or high
3: for each m ∈ {1, 2, . . . , 7} do
4: for each k ∈ {5, 6, . . . , 14} do
5: for each p ∈ {0.01, 0.02, . . . , 0.1, 0.15, 0.2, 0.3, 0.4, 0.5} do
6: for each boot ∈ {1, . . . , 1000} do
7: g ← Generate a Barabási-Albert network with parameter m

of size k and random seed boot
8: g1 ← Alter g with Algorithm 2 or Algorithm 3 using delType

and p
9: d← Compute degree distribution of g1

10: lmomm,k ← Compute (λ2, τ3, τ4) of d
11: normlm ← Normalize lmomm,k with (

˜
µm,k,Σm,k) from Ta-

bles B.4 and B.5
12: R← statistic based on dimension of normlm
13: c← critical value based on alpha and dimension of normlm
14: if R > c then
15: return TRUE NEGATIVE
16: else
17: return FALSE POSITIVE
18: end if
19: end for
20: end for
21: end for
22: end for
23: end procedure
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degree is 1 (m = 1), the clustering coefficient is always zero due to the fact that only

one edge can be added as the network grows thus a triad formation is not possible.

When considering the number of isolates and components caused by edge deletion,

it is very apparent that as the minimum degree (m) increases, the networks become

less affected by the deletion process (Tables 19 and 20) resulting in fewer isolates

and fewer components. It is also apparent that the required network size k and

proportion of deletion p that would result in isolates and components becomes larger

as m increases. This is expected since most of the nodes when m = 1 have only a

single edge that connects them to another node. Thus, any deletion will likely cause

some isolates that will eventually lead to the network being fragmented, resulting in

more components.

Table 19. Summary of isolates caused by edge deletion

# of Isolates 95% CI
m Degree Level k p (lowest) (highest)

1 low all all (6, 8) (4876, 4956)
medium 6, . . . , 14 all (6, 8) (4876, 4956)
high 9, . . . , 14 all (6, 19) (553, 688)

2 low 7, . . . , 14 0.04, . . . , 0.5 (5, 13) (1813, 1910)
medium 9, . . . , 14 0.15, . . . , 0.5 (5, 15) (537, 615)
high 13, 14 0.4, 0.5 (6, 21) (17, 39)

3 low 8, . . . , 14 0.15, . . . , 0.5 (7, 17) (716, 792)
medium 10, . . . , 14 0.3, . . . , 0.5 (9, 22) (224, 282)

4 low 9, . . . , 14 0.3, . . . , 0.5 (5, 15) (288, 345)
medium 13, 14 0.5 (11, 71) (28, 134)

5 low 11, . . . , 14 0.3, . . . , 0.5 (10, 25) (118, 158)
medium 14 0.5 none (11, 28)

6 low 12, . . . , 14 0.4, 0.5 (8, 23) (46, 75)

7 low 13, 14 0.5 (7, 21) (18, 38)

Further examination of the number of components caused by the deletion process

on the network has some implication in real world applications where it might be

of interest to study the vulnerability of a particular network either for interdiction

or protection. Figures 21 and 22 show that even for the smallest k, edge deletion
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Table 20. Summary of components resulted from edge deletion

# of Components 95% CI
m Degree Level k p (lowest) (highest)

1 medium 5 0.4, 0.5 none (1, 2)
high all all (1, 2) (823, 962)

2 medium all 0.04, . . . , 0.5 (1, 2) (39, 66)
high 10, . . . , 14 0.2, . . . , 0.5 (1, 2) (1, 4)

3 medium 7, . . . , 14 0.2, . . . , 0.5 (1, 2) (2, 10)

4 medium 11, . . . , 14 0.4, 0.5 (1, 2) (1, 3)

5 medium 14 0.5 none (1, 2)

Figure 21. Number of components caused by high degree edge deletion on m = 1. (Bars
are 95% CI.)

causes the network to be broken apart into multiple components. Although, smaller

proportions (p) do not cause the same effect as the minimum degree (m) gets larger

as they do when the minimum degree is m = 1. However, as k gets larger, smaller
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Figure 22. Number of components caused by medium degree edge deletion on m = 2.
(Bars are 95% CI.)

proportions start to affect both m = 1 and m = 2. It should be noted that for m = 1,

it is high degree edge deletion that is producing such result whereas it is medium

degree edge deletion for m = 2. Other combinations of degree level and m do not

provide meaningful results with respect to the number of isolates and components.

When studying the change in the clustering coefficient caused by the edge deletion

process, only edge deletion on high degree nodes resulted in a significant change in

the clustering coefficient as the proportion of deletion, p, increases, and this is true

for all m 6= 1 (Figures 23, C.3 and C.4). However, the size k at which the clustering

coefficient becomes significantly different as a function of p varies with the minimum

degree, m. It seems that the clustering coefficient becomes significantly smaller as

p increases, but only for k ≥ 9, and the size k at which this happens decreases as
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m increases. This result is counter to what is observed from the results on isolates

and components, where it was shown that as m increases, the networks become less

affected by edge deletion on high degree nodes. This suggests that the clustering

coefficient is able to capture a characteristic of the network as a function of edge

deletion that was not able to be captured by the number of isolates and components

alone. Overall, edge deletion seems to have created isolates uniformly across all sizes

of networks, but only created components on medium and high degree levels. Even

so, the clustering or triadic structure of the network are not affected unless the high

degree nodes are affected.

Power of the Test on Edge Deletion.

For low degree and high degree edge deletion, as the proportion of edges deleted

(p) increases, the test on λ2 becomes more likely to reject the degraded network

from being classified as the network from which it originated, but the power drops

unexpectedly when p becomes too large for m = 2 (Figures C.7 to C.9). Figures 24

and 25 show the distribution for L-scale with respect to p for m = 2, in which the

distribution increases (decreases) and then decreases (increases) for low (medium)

degree, explaining the patterns in the power curves. However, the multivariate test

of (λ2, τ3, τ3) outperforms the univariate test of λ2 in all cases and is able to maintain

its power even when p becomes large. For medium degree edge deletion, although

the multivariate test outperforms the univariate test, the power is less stable when

compared to both low degree and high degree where there is a drop in power around

p = 0.2 for k ≥ 8. This seems to suggest that it is harder to detect subtle degradation

within the network with respect to edge deletion when only the medium (median)

degree nodes are affected.

It is standard practice to consider a power of 0.8 as being sufficient to deem a test

92



www.manaraa.com

Figure 23. Clustering coefficients of networks after edge deletion on high degrees. (Bars
are 95% CI.)
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Figure 24. Boxplot of λ2 for m = 2 of low degree deletion

Figure 25. Boxplot of λ2 for m = 2 of medium degree deletion

as being a good test. Therefore, the minimum network size (k) that is required for a

test to achieve 80% power versus the proportion of deletion (p) is compared between

the univariate and multivariate test. As shown in Table 21 and Figure C.10, the

univariate test using λ2 could not achieve the desired power for some values of p, but

the multivariate test was able to do so for all cases except for when m = 1 and p < 0.1

in low and medium degree deletion. As p increases, the required k becomes smaller

which suggests that the proportion of deletion has to be high when the network is

small for the test to be able to detect the degradation. This is also evident when

looking at the smallest proportion of edge deletion required to achieve 80% power as

shown in Table 21. Although the trivariate test could not achieve 80% power when
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m is larger for k = 5, it outperforms the univariate test in general. This makes sense

since there are less edges affected in the smaller networks and a small p might not

cause any deletion. Overall, considering deletion of only minimum degree nodes (low

degree), 20% or greater of edges must be deleted before the test using λ2 could detect

a change in the network. However, the trivariate test using (λ2, τ3, τ4) can detect the

deletion from only a 1%-15% proportion of deletion for m ≥ 2. When considering

deletion of high degree nodes, the test using (λ2, τ3, τ4) can detect degradation of large

networks with as little as 2% of edges being deleted.

Table 21. Smallest proportion of edge deletion, p, required to achieve 80% power

k = 5 k = 7 k = 10
Degree Level m λ2 (λ2, τ3, τ4) λ2 (λ2, τ3, τ4) λ2 (λ2, τ3, τ4)

Low 1 X 0.30 X 0.30 0.40 0.30
3 X 0.04 X 0.02 0.20 0.01
5 X 0.07 0.50 0.03 0.20 0.01
7 X 0.15 0.50 0.04 0.20 0.01

Medium 1 X 0.40 X 0.40 0.40 0.30
3 X X X 0.2 X 0.15
5 X X X 0.40 0.50 0.30
7 X X X 0.40 X 0.30

High 1 0.50 0.30 0.30 0.09 0.15 0.02
3 X 0.40 0.40 0.30 0.10 0.07
5 X X 0.30 0.30 0.08 0.06
7 X X 0.30 0.30 0.07 0.06

Implication of Edge Deletion.

There are a few implications from the results of edge deletion that can be made

for networks that can be characterized as Barabási-Albert networks. Edge deletion

can be illustrated as destroying the connectors within a network. For example, edge

deletion in the context of road networks between places of interest can be thought of

as destroying or seizing the roads connecting those places. In social context, it can
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be thought of as intercepting or blocking means of communications between individ-

uals, or it can even be thought of as ruining the relationships between individuals.

Depending on the objective, one might be more interested in degrading a network, or

in detecting whether or not the network is being degraded and reacting accordingly.

The most obvious implication that can be made is that nodes of networks with

lower degree are at risk of being isolated or fragmented into multiple sub-networks if

the connections between nodes are deleted, especially between those with minimum

or median degrees. However, for these networks, the clustering within the remaining

connected nodes is not affected, and this implies that the connection within the

remaining sub-networks is intact. On the other hand, for networks whose minimum

degree (m) is larger, the more effective method of degrading the network is to delete

connections for nodes with high degree, and although this will not degrade the network

into sub-networks, it will reduce the clustering within the network and reduce its

connectivity. These results are summarized in Table 22.

Table 22. Recommended degree level at which to perform edge deletion that results in
isolates, components, and changes in clustering

m (minimum degree)

Characteristic
Affected

1 2 3 4 5 6 7

Isolates
Low,

Medium,
High

Low,
Medium

Low,
Medium

Low Low none none

Components High
Medium,

High
Medium Medium none none none

Clustering none High High High High High High

On the opposite end, if one is concerned with detecting degradation within the

network, then this can be achieved with good power using the trivariate test on the L-

moments of the degree distribution. This is especially true for detecting degradation

caused by edge deletion of nodes with minimum and median degree where it was shown
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that the trivariate test outperforms the univariate test. Additionally, although the

univariate test performs comparably to the trivariate test for detecting edge deletion

on high degree nodes, the trivariate test is better at detection for networks with

smaller minimum degree and size (Table 21).

4.5.2 Node Deletion.

Characteristics of Node Deletion.

When considering the number of isolates and components caused by node deletion,

it is very apparent that node deletion is not as destructive on the networks as edge

deletion since only a few combinations of degree level, k, and p resulted in isolates or

components. Similar to edge deletion, as m increases, the networks become much less

affected by node deletion (Tables 23 and 24). However, only Barabási-Albert networks

with m = 1, 2 are affected by node deletion, and m = 1 is more affected than m = 2,

since the resulting number of isolates and components is larger by magnitudes. Again,

this can be accounted to the small degrees in m = 1 as mentioned in Section 4.5.1.

Table 23. Summary of isolates caused by node deletion process

# of Isolates 95% CI
m Degree Level k p (lowest) (highest)

1 high 9, . . . , 14 0.02, . . . , 0.5 (6, 25) (532, 700)

2 medium 12, . . . , 14 0.3, . . . , 0.5 (7, 23) (16, 40)
high 13, 14 0.4, 0.5 (6, 22) (16, 40)

Table 24. Summary of components resulted from node deletion process

# of Components 95% CI
m Degree Level k p (lowest) (highest)

1 high all all (1, 5) (699, 895)

2 medium 10, . . . , 14 0.2, . . . , 0.5 (1, 2) (1, 3)
high 10, . . . , 14 0.2, . . . , 0.5 (1, 2) (1, 4)
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Figure 26. Number of components caused by high node deletion on m = 1. (Bars are
95% CI.)

Further investigation on the number of components caused by node deletion shows

that only high degree level of m = 1 is heavily affected, and a higher proportion of

deletion (p) is needed to cause any fragmentation of the network when k is small

(Figure 26). However, when k is large, the resulting number of components when

nodes are deleted is comparable to that of edge deletion, which again suggests that

node deletion causes the same level of degradation in terms of number of components

despite having only affected less item than edge deletion (i.e. less nodes versus less

edges required for deletion).

Similar to edge deletion, investigation on the clustering coefficient of the networks

with respect to node deletion suggests that clusters within the network are only

affected by node deletion on high degree nodes. However, unlike edge deletion, only
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networks with m ≥ 3 are affected (Figure 27) and the effects are not as prominent as

those for edge deletion. When m = 2, the clustering coefficient does not significantly

change as more nodes are deleted (i.e. p increases) even when the network is large

(k = 14) (Figure 28). Again, this result is the opposite from those of isolates and

components. Thus, it seems that although node deletion on high degree results in a

large number of isolates and components when the minimum degree is small (m ≤ 2),

the clustering of the network is not affected. On the other hand, when the minimum

degree is not small (m ≥ 3), the network is able to stay connected, but the remaining

nodes now become less clustered as shown by the decreasing clustering coefficient.

Power of the Test on Node Deletion.

The test using λ2 appears to have very low power for medium degree node deletion

with m ≥ 2 where it could barely achieve 80% power unless p and k are very large

(Figure C.12). Medium degree node deletion also appears to be the only level of

node deletion where the test using (λ2, τ3, τ3) definitely outperforms the univariate

test with the exception of m = 1 for which the test using λ2 appears to be on par

for k ≥ 10. For low and high degree node deletion, both tests seem to be equal in

power. Nevertheless, for low degree node deletion, the multivariate test outperforms

the univariate test when k is small or when m is large whereas in the high degree

case, the multivariate test is noticeably better when k = 8, 9, 10 and m ≤ 3. Neither

test was useful for high degree node deletion when k ≤ 7.

When comparing the minimum network size k that is required for a test to achieve

80% power versus the proportion of deletion p for node deletion, several observations

are made. For low degree node deletion, the univariate test could not achieve the

desired power unless k ≥ 10, and even though the multivariate test performs better,

it experiences the same problem when m ≥ 3. For medium degree node deletion, the
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Figure 27. Clustering coefficients of networks after node deletion on high degrees.
(Bars are 95% CI.)
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Figure 28. Clustering coefficients of networks after node deletion on high degrees when
m = 2 and k = 14. (Bars are 95% CI.)

univariate test could not achieve the desired power for most cases and even when it

does, the required network size is very large (k ≥ 10) and the proportion required is

very parge (p ≥ .20). Lastly, the performance of both tests are comparable for high

degree node deletion in terms of minimum required size (k ≥ 7), and the multivariate

test is only slightly better for m ≤ 3 (k ≥ 7). One overall observation that applies

to all three degree node deletion levels is that, unlike the drastic drop in the required

network size observed in edge deletion, the change for node deletion is gradual, requir-

ing higher network sizes for change detection. Furthermore, the proportion of nodes

affected must be higher than the proportion of edges affected to detect a change.

These results imply that to detect degradation in a network, or to degrade a network,

a bigger effect is obtained through a smaller proportion affected with respect to edge

deletion versus node deletion.
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Table 25. Smallest proportion of node deletion, p, required to achieve 80% power

k = 5 k = 7 k = 10
Degree Level m λ2 (λ2, τ3, τ4) λ2 (λ2, τ3, τ4) λ2 (λ2, τ3, τ4)

Low 1 X 0.30 X 0.30 0.40 0.30
3 X 0.04 X 0.02 0.50 0.40
5 X X X X X 0.40
7 X X X X X X

Medium 1 X 0.40 X 0.40 0.40 0.30
3 X X X 0.2 X 0.05
5 X X X 0.50 X 0.15
7 X X X X X 0.30

High 1 X X X 0.50 0.20 0.10
3 X X X 0.50 0.20 0.10
5 X X 0.50 0.50 0.20 0.10
7 X X 0.50 0.50 0.10 0.10

Implication of Node Deletion.

Similar to edge deletion, there are a few implications from the results for node

deletion. However, unlike edge deletion, node deletion can instead be illustrated as

destroying the actors or entities of interest within a network. Going back to the

context of road networks, a node deletion is analogous to destroying the actual places

of interest within the network whereas in a social context, it can be thought of as

detaining or removing the specific individuals from the network. Note that in both

context, once the entities are removed, all connections between those entities to others

in the network are rendered useless. This corresponds directly to edges being removed

when removing the nodes in a graph.

It is apparent from the characteristic of node deletion that the nodes of networks

with smaller minimum degree (m) are at risk of being isolated or fragmented into

multiple sub-networks if the nodes with medium or high degree are deleted. However,

the clustering within the remaining connected nodes for this group of network (i.e.

networks with smaller minimum degree) is not affected. For networks with larger
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minimum degree, the more effective method of degrading the network is to delete

nodes with high degree similar to edge deletion since it will reduce the clustering

within the network and reduce its connectivity. These results are summarized in

Table 26.

Table 26. Recommended degree level at which to perform node deletion that results
in isolates, components, or changes in clustering.

m (minimum degree)

Characteristic
Affected

1 2 3 4 5 6 7

Isolates High
Medium,

High
none none none none none

Components High
Medium,

High
none none none none none

Clustering none none High High High High High

For detecting degradation, the trivariate test is shown to perform better than

the univariate test especially for detecting degradation caused by node deletion of

nodes with minimum and median degree. However, the univariate test performs

comparably to the trivariate test for detecting node deletion on high degree nodes

except for specific network sizes.

4.5.3 Summary of Sensitivity Analysis.

In summary, edge deletion affects the network more so than node deletion with

respect to the number of isolates and components caused and to changes in clustering.

The trivariate test for change detection using (λ2, τ3, τ4) is also more sensitive to

edge deletion than node deletion since it is able to detect the changes at a smaller

proportion of deletion (p). In other words, the test is able to detect degradation

caused by edge deletion much sooner than if it is caused by node deletion. Recall

that, here, degradation is defined as removal of nodes or edges within the network that

changes the structure of the network and its degree distribution. However, the results
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from the trivarite test are also applicable to growing networks that is a function of

its minimum degree. The power of the test from Section 4.4 shows that the trivariate

test is able to detect, with good power, if the minimum degree (m) of the network

has changed even when the minimum degree is not small.

104



www.manaraa.com

V. Empirical Degree Distribution of Barabási-Albert
Networks

The secondary objective of providing an accurate estimate of a parameter, β, for

which the hypothesis tests in the primary objectives are constructed will now be

presented. As previously stated, such an estimate has not been conclusively pro-

vided within the available literature. Nevertheless, the proper value of β is necessary

in order to form the correct hypotheses for the tests described above. Therefore,

a simulation of the Barabási-Albert network is performed in order to estimate the

parameter empirically using methods as proposed by Newman [70] and Clauset and

others [16].

5.1 Network Simulation

Network data was simulated to 1) determine the values of the parameters for

the degree distribution when assuming the degree follows a continuous power law

(Pareto) distribution, and compare the distribution with the estimated parameters

to the theoretical distribution as derived by Barabási and Albert [6], and 2) to de-

termine which form of the degree distribution (Pareto or Yule-Simon) best fits the

degree distribution. Two sets of degree distribution data were generated from simu-

lated Barabási-Albert graphs of various parameter and size combinations. The first

set of data is used for parameter estimation and comparison for the Pareto distribu-

tion whereas the second set of data is used for goodness of fit to determine which

distributional form best represents the degree distribution. The simulation was con-

ducted in R using the igraph package [17] for network generation and computation

of network degrees. The Barabási-Albert algorithm takes in as input the number of

nodes, n, and the number of edges added at each iteration, m∗. An optional starting

graph input was also included that forces the algorithm to start with having m∗ nodes,
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each having degree m∗ so that the condition in Equation (3) as set by Barabási-Albert

[6] is met and to also guarantee a connected graph. The parameter selection for the

simulation is listed in Table 27 where 1000 independent networks were generated for

each of the 33 combinations of graph parameters and sizes. These combinations were

chosen so that the sizes of the networks examined spanned from small to large, and

to also study the behavior of the associated Barabási-Albert graphs that have nodes

with low degrees (i.e. m∗ = 2, 4, 6).

Table 27. Parameters for network simulation

Parameters Size
m∗ ∈ {2, 4, 6} n = 2k; k ∈ {5, 6, . . . , 14, 15}

5.2 MLE and Nonparametric Estimation

Under the assumption that the degree distribution of the Barabási-Albert network

follows the Pareto distribution, the MLE-nonparametric method [16] is used to esti-

mate the parameters m and β using m̂MLEnp and β̂MLEnp, respectively, as described

in Section 2.2.2. Additionally, assuming that β = 2, m was directly estimated by

letting m̃MLEnp be a value that minimizes the KS statistic. Estimation of the param-

eters is performed using the poweRlaw package in R [29]. Another estimate of m was

computed by fixing β = β̂MLEnp and solving the least square estimate m̂MLEnp2. The

purpose was to obtain a smaller estimate of m since the method proposed by Clauset

and others [16] truncates the support of the distribution. For X ∼ Pareto(m,β), the

SF is given by

SX(x) = mβx−β

and

ln(SX(x)) = β ln(m)− β ln(x) (25)
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which is a linear function of ln(x). Therefore m and β can be estimated by the method

of least squares using Equation (25). Given a network of size n, and the degrees for

each of the n nodes of the network denoted by the n× 1 vector,
˜
x, the empirical SF

(Ŝn(x)) was computed from the empirical CDF for each observed value x as

F̂n(x) =
number of elements in sample ≤ x

n

and Ŝn(x) = 1− F̂n(x). Let

˜
y = ln Ŝn(

˜
x) + β ln(

˜
x), µ = β ln(m), and X =

˜
1,

then the least squares solutions to
˜
y = Xµ when β = β̂MLEnp is m̃ = exp

(
ȳ

β̂MLEnp

)
.

For each combination of n and m, a Monte Carlo distribution for m̂MLEnp, β̂MLEnp,

and m̂MLEnp2 as well as m̃MLEnp for when β = 2 was built from the first set of

simulated data. The data was also used to create a 95% bootstrapped confidence

interval of the estimates where the estimates were sampled from the 1000 simulated

networks.

Results demonstrate that the MLE-nonparametric method is less stable for esti-

mating m than just simply fitting a least square estimates on the SF. As shown in

Figure 29, as n increases, the estimates and associated 95% confidence intervals for

m̂MLEnp shift upwards and widens even when fixing β = 2. The overlapping intervals

also indicate that m̂MLEnp estimates are not significantly different by m∗, nor are

they dependent on m∗. However, the estimate, m̂MLEnp2, has a pattern that is more

conforming to the theoretical m = m∗
√

(n−m∗)
n

where the values are closer to m and

falls within the 95% CI (Figure 29 and Table 28). Since any observed degree that

falls outside the support of a hypothetical distribution will result in a likelihood of

zero, the m̂MLEnp2 estimate is used since it provides a support that better represent
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the observed degree distribution as opposed to m̂MLEnp.

Table 28. MLE-nonparametric point estimates of m and β.

m∗ k : n = 2k m̂LS |(β = 2) m̂LS β̂LS
2 5 1.7148 1.4427 1.5475

2 6 1.7079 1.4154 1.5229

2 7 1.7081 1.4200 1.5336

2 8 1.7001 1.4126 1.5419

2 9 1.6965 1.4167 1.5544

2 10 1.6953 1.4225 1.5626

2 11 1.6934 1.4235 1.5689

2 12 1.6927 1.4256 1.5720

2 13 1.6919 1.4268 1.5744

2 14 1.6914 1.4269 1.5753

2 15 1.6914 1.4281 1.5769

4 5 3.7156 3.5147 1.8101

4 6 3.7319 3.4111 1.7241

4 7 3.7149 3.3739 1.7008

4 8 3.6975 3.3558 1.7079

4 9 3.6775 3.3428 1.7130

4 10 3.6663 3.3445 1.7222

4 11 3.6582 3.3487 1.7315

4 12 3.6534 3.3516 1.7376

4 13 3.6509 3.3541 1.7421

4 14 3.6490 3.3554 1.7447

4 15 3.6481 3.3568 1.7462

6 5 5.6962 5.7645 2.0553

6 6 5.7858 5.5453 1.8535

6 7 5.7683 5.4150 1.7895

6 8 5.7323 5.3503 1.7760

6 9 5.6955 5.3225 1.7796

6 10 5.6706 5.3148 1.7888

6 11 5.6537 5.3135 1.7969

6 12 5.6444 5.3197 1.8053

6 13 5.6380 5.3227 1.8109

6 14 5.6333 5.3255 1.8146

6 15 5.6314 5.3284 1.8174

m m̂MLEnp m̂MLEnp2 β̂MLEnp

1.9365 5 1.9762 2.6275

1.9685 6 1.9769 2.5919

1.9843 7 1.9465 2.5291

1.9922 9 1.9346 2.5171

1.9961 11 1.9147 2.4716

1.9980 13 1.905 2.4565

1.9990 16 1.886 2.4181

1.9995 19 1.8933 2.4327

1.9998 23 1.8904 2.4287

1.9999 27 1.8929 2.435

1.9999 32 1.8927 2.4313

3.7417 6 4.0697 2.3686

3.8730 8 4.0085 2.2735

3.9370 10 3.9683 2.2546

3.9686 12 3.895 2.1927

3.9843 14 3.8523 2.1721

3.9922 17.5 3.8209 2.1581

3.9961 21 3.821 2.1625

3.9980 26 3.8154 2.1622

3.9990 32 3.815 2.1659

3.9995 38 3.8174 2.1715

3.9998 46 3.823 2.1785

5.4083 7 5.8604 2.0934

5.7118 9 5.9282 2.0921

5.8577 11 5.8841 2.0678

5.9293 13 5.8362 2.0589

5.9647 17 5.7929 2.0596

5.9824 21 5.7643 2.0574

5.9912 25 5.7637 2.0708

5.9956 31 5.7608 2.0785

5.9978 38 5.7671 2.0861

5.9989 46 5.7702 2.091

5.9995 55 5.7809 2.099

The interval estimates of β as shown in Figure 30 seem to be more stable with

the only changes coming from the width of the confidence intervals which becomes

smaller as n increases. Since these intervals also overlap, we conclude that β̂MLEnp
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m̂MLEnp 95% CI with unfixed β

m̃MLEnp 95% CI with fixed β = 2

m̂MLEnp2 95% CI with fixed β = β̂MLEnp

Figure 29. Top: m̂MLEnp estimate with β unfixed. Middle: m̃MLEnp estimate with fixed

β = 2. Bottom: m̂MLEnp2 estimate with fixed β = β̂MLEnp. t is the number of iterations
required to complete a graph of size n

is not significantly different for m∗, and even though the median values seem to be

stable across n, the confidence intervals seem to be converging to a value higher

than β = 2 which, again, is counter to what is theoretically suggested. However,

compared to the least squares estimate, the β̂MLEnp values are much closer to the
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theoretical value. The result from the MLE-nonparametric approach suggests that

the distribution derived by Barabási-Albert [6] is only observed in the tail of the

degree distribution as implied by the truncation for the estimation of β. In essence,

the best fit was obtained by setting a high m̂MLEnp and truncating the lower end of

the distribution and while emphasizing the tail.

β̂MLEnp 95% CI with unfixed m

β̂MLEnp median with unfixed m

Figure 30. β̂MLEnp estimate with m unfixed. t is the number of iterations required to
complete a graph of size n

5.3 Goodness of Fit

Several metrics were used to determine which distribution and parameters best

fit the degree distribution: mean squared error (MSE) and −loglikelihood com-

puted from the second set of simulated data fitted against various distributional

forms (Pareto and Yule-Simon) and the parameter estimates. The Zipf’s law was
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not compared since the Yule-Simon distribution is considered a better fit under the

discrete assumption [70]. Recall that Newman [70] suggested that the exponent for

the Barabási-Albert graph is β = 1.2 as opposed to β = 2 [6]. In addition, Li and

others [59] found that the exponents of the power law distribution from a simulated

Barabási-Albert graph for m∗ ∈ {4, 6, 8} for size n = 5000 are less than β = 2. Since

our own analysis using the estimates from least squares and MLE-nonparametric

methods seems to suggest that the exponent varies depending on m∗ and n, other

parameter selections were included for the goodness of fit comparison. The various

selections of β and m for the Pareto and Yule-Simon distribution examined are given

in Table 29 and span the range of values suggested in the literature and those found

in Section 5.2.

Table 29. (m,β) combinations for goodness of fit comparisons

Distribution β m

Pareto 1.2, 1.5, 1.8, 2, 2.1 m∗
√

(n−m∗)
n

median for β̂MLEnp
median for m̂MLEnp and

m̂MLEnp2

2 median for m̃MLEnp

Yule-Simon 1.2, 2 m∗

Therefore, 1000 estimates for the distribution of the MSE and −loglikelihood

for each of the 33 network parameter combinations were used to compare 1) if the

least squares and MLE-nonparametric methods of parameter estimation differed sig-

nificantly in resulting parameter estimates, and 2) which method produces better

estimates of m and β via the MSE and −loglikelihood. The MSE is defined as the

average squared difference between the predicted value of the empirical probability

density value for each parameter and the expected density of each parameter with
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respect to a hypothesized distribution. A model with maximum likelihood value (or

lower −loglikelihood) and lowest MSE is preferred.

Since the support of the Pareto distribution is bounded below by m, the joint

probability of any random sample with elements that are less than m will result in

the likelihood being equal to zero. On the other hand, the MSE is not affected as sig-

nificantly as the likelihood with respect to the bounded distribution. The likelihood is

capturing the exact information for distribution fitting such that any random sample

that falls outside of the support of the hypothesized distribution is likely not from said

distribution. Therefore, a hierarchical goodness of fit approach is used to test model

parameters by first looking at the −loglikelihood to find a set of parameters that gave

a significantly better fit, and then of those indistinguishable via the −loglikelihood,

the MSE was used to distinguish which estimates produced the smallest error.

MSE and −loglikelihood values of the second dataset were computed using the

median point estimates from the bootstrapped m̂ and β̂ distribution given in Ta-

ble 28 in addition to the other parameter selections as outlined in Table 29. The

MLE-nonparametric estimate, m̂MLEnp, provided a poor estimation of the support

for the degree distribution with a truncation point that essentially discounted a huge

proportion of the degree distribution since the lower bound set by m̂MLEnp is higher

than the possible smallest degreem∗ (Table 28). Moreover, as n increased, the point of

truncation shifted higher, misspecifying a majority of the true degree density. There-

fore, m̂MLEnp2 is used instead of m̂MLEnp for comparison against the other estimates

of the degree distribution as listed in Table 29.

A comparison of the Pareto and Yule-Simon degree distributions using both β

values of 1.2 and 2 for the smaller networks (i.e. k ≤ 8, n = 2k), suggested that

the Pareto distribution is either the best fit for the data or is no worse than the

Yule-Simon distribution depending on the n and m∗ as shown in Table 30. Here
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in Table 30, bold values indicate which MSE values are significantly different from

one another (95% CIs do not overlap) with bolded values representing a significantly

better goodness of fit. Further, these results demonstrate that β = 1.2 is not a

significantly different fit than the theoretical β = 2 for the degree distribution with

m∗ = 2 and k ≤ 7. Therefore, we focus on the Pareto distribution as the assumption

for the degree distribution of the Barabási-Albert graph, and a value of β = 2 for m∗

greater than 2 and larger k.

A comparison of the goodness of fit measures for various β values for the Pareto

distribution gives some insight into the behavior of the degree distribution as n and m∗

varies (Tables D.8 and D.9). β gradually increased from 1.2 as the size of the network

increased for all m∗, although the increase in the value of β is not significantly different

until k = 8 and k = 9 for m∗ = 4 and m∗ = 6, respectively. However, this may be an

artifact of the degree distribution having a higher density in the lower portion of its

support, where the likelihood of any estimated parameter whose density is heavier in

the lower portion will result in a better likelihood (Figures 31 and 32).

The −loglikelihood confidence interval for the least squares estimate appears to

be significantly worse than any of the other theoretical estimates (Table 31) with the

exception of m∗ = 6 for k = 6. However, the confidence interval of the MSE for the

least squares estimate is either significantly better, or no worse than the best MSE of

other theoretical distributions. Although the −loglikelihood confidence intervals of

the MLE-nonparametric estimates overlap the confidence intervals of the best fitting

theoretical distributions, they do not overlap the −loglikelihood confidence intervals

of the least squares estimates (Table 31). Additionally, the least squares method

is heavily influenced by the density of the lower portion of the degree distribution,

and since this lower portion does not fit the same power law distribution of the

tail as shown by the truncation point in the MLE-nonparametric method, the least
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Table 30. -loglikelihood and MSE values of the fitted degree distribution by m∗, k, and
parameter assumptions

−loglikelihood

k Distribution (β)
Median
m∗ = 2

95% CI m∗ = 2

5 Yule (2.0) 58.73 (55.6,61.8)

5 Yule (1.2) 60.41 (57.9,62.9)

5 Pareto (2.0) 47.88 (43.7,52.2)

5 Pareto (1.2) 51.18 (48.1,54.3)

6 Yule (2.0) 117.91 (112.5,122.4)

6 Yule (1.2) 121.15 (116.7,124.9)

6 Pareto (2.0) 93.96 (86.7,100.0)

6 Pareto (1.2) 101.32 (96.0,105.8)

7 Yule (2.0) 234.86 (226.8,241.4)

7 Yule (1.2) 241.44 (234.8,246.8)

7 Pareto (2.0) 184.39 (173.6,193.3)

7 Pareto (1.2) 200.34 (192.4,206.9)

8 Yule (2.0) 466.75 (454.8,477.5)

8 Yule (1.2) 480.45 (470.8,489.1)

8 Pareto (2.0) 362.68 (347.0,377.2)

8 Pareto (1.2) 396.47 (385,407.1)

Median
m∗ = 4

95% CI m∗ = 4

76.71 (74.7,78.7)

78.99 (77.4,80.6)

74.16 (71.6,76.6)

76.07 (74.2,77.8)

154.83 (151.2,158.4)

158.98 (156.2,161.8)

145.08 (140.9,149.5)

150.36 (147.3,153.6)

308.74 (302.5,314.7)

317.19 (312.2,321.8)

284.67 (277.3,291.8)

297.26 (291.8,302.5)

613.86 (604.3,622.4)

631.49 (624.1,638.2)

560.82 (549.6,570.9)

588.82 (580.6,596.2)

Median
m∗ = 6

95% CI m∗ = 6

87.15 (85.6,88.5)

89.94 (88.7,91)

89.13 (87.3,90.7)

90.2 (88.9,91.4)

177.89 (175,180.6)

182.49 (180.3,184.6)

174.79 (171.5,178)

178.78 (176.4,181.1)

355.64 (350.8,360.3)

364.79 (361,368.4)

342.65 (337.2,347.9)

353.34 (349.3,357.2)

707.14 (699.9,714.8)

726.34 (720.9,732.3)

674.25 (666.2,683.0)

699.41 (693.5,705.8)

MSE

k Distribution (β)
Median
m∗ = 2

95% CI m∗ = 2

5 Pareto (2.0) 0.1113 (0.0828,0.1246)

5 Pareto (1.2) 0.0094 (0.0023,0.0255)

5 Yule (2.0) 0.0034 (0.0004,0.0176)

5 Yule (1.2) 0.0045 (0.0010,0.0206)

6 Pareto (2.0) 0.1242 (0.1074,0.1344)

6 Pareto (1.2) 0.0102 (0.0037,0.0200)

6 Yule (2.0) 0.0021 (0.0003,0.0102)

6 Yule (1.2) 0.0033 (0.0010,0.0120)

7 Pareto (2.0) 0.1308 (0.1181,0.1385)

7 Pareto (1.2) 0.0102 (0.0050,0.0165)

7 Yule (2.0) 0.0016 (0.0002,0.0062)

7 Yule (1.2) 0.0029 (0.0011,0.0091)

8 Pareto (2.0) 0.1336 (0.1249,0.1397)

8 Pareto (1.2) 0.0100 (0.0062,0.0145)

8 Yule (2.0) 0.0012 (0.0002,0.0039)

8 Yule (1.2) 0.0031 (0.0014,0.0069)

Median
m∗ = 4

95% CI m∗ = 4

0.0088 (0.0031,0.0151)

0.0023 (0.0005,0.0083)

0.0028 (0.0007,0.0085)

0.0034 (0.0011,0.0130)

0.0102 (0.0054,0.0148)

0.0010 (0.0002,0.0042)

0.0013 (0.0003,0.0051)

0.0025 (0.0009,0.0081)

0.0111 (0.0074,0.0143)

0.0005 (0.0001,0.0023)

0.0007 (0.0002,0.0027)

0.0023 (0.0010,0.0060)

0.0116 (0.0088,0.0141)

0.0003 (0.0001,0.0012)

0.0005 (0.0001,0.0016)

0.0023 (0.0012,0.0049)

Median
m∗ = 6

95% CI m∗ = 6

0.0030 (0.0012,0.0074)

0.0028 (0.0010,0.0081)

0.0025 (0.0009,0.0067)

0.0029 (0.0011,0.0085)

0.0024 (0.0010,0.0045)

0.0012 (0.0004,0.0039)

0.0010 (0.0003,0.0030)

0.0018 (0.0007,0.0053)

0.0025 (0.0013,0.0040)

0.0008 (0.0003,0.0023)

0.0005 (0.0002,0.0018)

0.0016 (0.0007,0.0038)

0.0026 (0.0017,0.0036)

0.0006 (0.0002,0.0015)

0.0003 (0.0001,0.0009)

0.0015 (0.0009,0.0029)

Bold indicates grouping of significantly smallest goodness of fit.

squares method is heavily underestimating β. Along with the fact that the MLE-

nonparametric estimates are closer to the theoretical values of m and β, this seems

to suggest that the MLE-nonparametric approach with untruncated m̂ is the more

appropriate way to estimate the parameters of the power law distribution of the

Barabási-Albert graphs.
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Table 31. Goodness of fit for least squares and MLE-nonparametric point estimates

m∗ k m̂LS β̂LS -loglikelihood MSE
Median, (95% CI) Median, (95% CI)

2 6 1.4154 1.5229 128.446, (122.3829,133.5594) 0.0017, (0.0005,0.0094)
2 10 1.4225 1.5626 2019.9256, (1989.4299,2045.7492) 0.0007, (0.0004,0.0016)
2 15 1.4281 1.5769 64320.948, (64171.6391,64484.4478) 0.0007, (0.0006,0.0008)
4 6 3.4111 1.7241 159.1405, (155.3638,163.1259) 0.0013, (0.0002,0.0053)
4 10 3.3445 1.7222 2532.6096, (2511.0138,2554.2864) 0.0002, (0.0001,0.0006)
4 15 3.3568 1.7462 80473.9143, (80344.5779,80598.8424) 0.0001, (0.0001,0.0002)
6 6 5.5453 1.8535 177.9161, (174.7885,180.9538) 0.00128, (0.00044,0.00346)
6 10 5.3148 1.7888 2873.0657, (2855.4781,2892.2068) 0.00009, (0.00003,0.0003)
6 15 5.3285 1.8174 91197.9158, (91076.6104,91311.3347) 0.00004, (0.00003,0.00006)

m∗ k m̂MLEnp2 β̂MLEnp -loglikelihood MSE
Median, (95% CI) Median, (95% CI)

2 6 1.9769 2.5919 95.3985, (86.7663,102.6784) 0.2948, (0.2850,0.2985)
2 10 1.9050 2.4565 1560.2044, (1519.0710,1595.0360) 0.1845, (0.1807,0.1873)
2 15 1.8927 2.4313 50097.2975, (49898.4811,50315.0100) 0.1690, (0.1684,0.1697)
4 6 4.0085 2.2735 Inf, (Inf,Inf) 0.0278, (0.0111,0.0548)
4 10 3.8209 2.1581 2304.0024, (2278.9483,2329.1504) 0.0105, (0.0092,0.0119)
4 15 3.8230 2.1785 73238.2560, (73088.5620,73382.8479) 0.0110, (0.0108,0.0112)
6 6 5.9282 2.0921 170.2382, (166.8492,173.5299) 0.0043, (0.0023,0.0065)
6 10 5.7643 2.0574 2728.0896, (2708.8076,2749.0749) 0.0018, (0.0014,0.0023)
6 15 5.7809 2.0990 86464.1137, (86330.6857,86588.8671) 0.0021, (0.0020,0.0022)
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Figure 31. Distribution comparison for m∗ = 6 with varying N
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Figure 32. Distribution comparison for N = 26 with varying m∗
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VI. Discussion

The question is raised as to whether or not the true exponent of the empirical

degree distribution of the Barabási-Albert graph is equal to the theoretically derived

value of β = 2, especially for relatively small networks with small parameter m∗, the

minimum degree of a network node. To use the Barabási-Albert graph and its degree

distribution to represent a network of interest, the parameters m and β of the degree

distribution must be known or estimated. Previous authors have also made this query,

at least in passing, as shown by the works of Newman [70] and Li and others [59], but

no detailed investigation on the value of β has been documented to our knowledge.

It is noteworthy, however, that some have suggested that the preferential attachment

model causes biases on the connection of the high degree nodes in the Barabási-Albert

graph [59, 88, 106]. It is conjectured that this is one of the factors contributing to

the results of this dissertation which indicates that for relatively small networks, the

value of m and β are not equal to the theoretical value as suggested by Barabási and

Albert [6] and that m and β vary by m∗ and n.

It should be noted that there is a limitation to the least squares estimation for the

case of the Pareto distribution. Since a large portion of the density of the Pareto dis-

tribution lies in the lower part of its support, the fitted line on the doubly logarithmic

SF might be heavily influenced by the lower portion of the density thus underesti-

mating β if that line is not perfectly straight. One consideration is to truncate the

data and only consider the tail of the distribution similar to the MLE-nonparametric

approach, but realistically, given a real network, there is no prior knowledge as to

where that cut off point should be, so the conservative approach is to include the full

distribution. Another consideration is to use weighted least squares where the weights

are based on proportion of the random variable at the observed value. This will give

more influence to the tail of the distribution and account for the underestimation
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of the least squares method. Therefore, it is proposed that the appropriate value

for the parameters should be bootstrapped using an extended version of the MLE-

nonparametric method by Clauset and others [16] from simulated Barabási-Albert

networks.

This result comes with a few caveats which need to be addressed. Although the

−loglikelihood of the MLE-nonparametric estimates are worse than most of the hy-

pothetical estimates, this could be due to the fact that the lower bound of the Pareto

distribution for the MLE-nonparametric is lower than the theoretical lower bound of

m = m∗
√

(n−m∗)
n

. This causes, for the distribution of the MLE-nonparametric esti-

mate, a large proportion of the probability density to be shifted smaller, and since

m∗ > m, then any distribution with a larger m will obtain a larger −loglikelihood for

a given degree. As shown in Figures 31 and 32, the distribution from the m̂MLEnp2

tends to have a lower density than the better fitting hypothetical distributions. There-

fore, due to this limitation the proposed estimates did not have the best likelihood.

However, they advance the research in this area and are the closest estimates when

compared to the theoretical values of m and β versus the least squares and hypothet-

ical estimates. The findings in this dissertation supports the notion that the classical

theoretic underlining of the degree distribution of the Barabási-Albert model may not

apply to smaller networks. The knowledge of the true degree distribution is necessary

for characterizing a given network to an appropriate network model.

Nevertheless, a test of hypothesis with the assumption that the degree distribu-

tion of the Barabási-Albert graph follows the Pareto(m,β) distribution was derived.

The power of this test on β suggests that the power increases as m∗ increases or as k

increases. The test of hypothesis on m can exhibit poor power even in a close neigh-

borhood of the true m for smaller k depending on the true value of m∗, but the power

curve reaches a steady state with very high power as k gets larger. Additionally, a
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UIT was derived for the Pareto distribution that improved the power compared to

the individual tests on β and m. Application to simulated Barabási-Albert networks

showed that corrections on the mean and variance of the statistic’s distribution are

required due to the degree correlation caused by the preferential attachment model.

When this test was applied on a few datasets of real world network, it was found

that the degrees for most networks examined are larger than what is expected from a

Barabási-Albert network and that β is smaller than the theoretical value of 2. How-

ever, for some networks, the degree distribution of their associated sub-network is not

significantly different than that of the Barabási-Albert network.

The results from the real world datasets are not entirely unexpected. Estimation

of β for these networks without the assumption of the Pareto distribution through

least square estimation [70] and MLE-nonparametric methods [16] have suggested that

they differ from an assumed β = 2 of the Barabási-Albert network. Regardless, once

a value of β is established, the tests, as constructed in this dissertation, were shown

to work with good power when the proper values of m and β are provided. Further,

it has been suggested that the Barabási-Albert properties of preferential attachment

does not exist in real world data [88, 106], and that the degree distribution is a Power

law with a cut-off [16]. However, even the ability to represent only the sub-network as

a Barabási-Albert graph is very useful in that it still provides a method of modeling

the central structures of the network (i.e. the hubs) through the Barabási-Albert

model and is beneficial in making observation on a network removing the periphery

nodes.

Finally, a test of hypothesis on the sample L-moments of the degree distribution

of the Barabási-Albert network for the purpose of detecting degradation within the

network structure was also derived. Although the test is based on the empirical

degree distribution of the network, the assumption that the network degree follows
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the Pareto(m,β) distribution where β > 1 is still required. This is due to the fact

that the mean of the distribution has to be defined in order for the second and other

higher order L-moments to exist, but the mean is not defined if β ≤ 1. The test

on L-scale was shown to have good power when used to test for a Barabási-Albert

network, but extending the test into a multivariate test by adding the L-skewness

and L-kurtosis improved the power significantly for cases where the network size is

small. This initial step of truth classification is important even though it is not the

main purpose of the test because for the test to be a test of network degradation with

high fidelity, it is necessary for it to be able to classify the network to the ground

truth with high power. Additionally, the test also acts as a test for network growth

as a function of the m parameter since the test is able to detect with high power if

the network’s smallest degree, m, has increased.

A sensitivity analysis with respect to network degradation in terms of edge and

node deletion was conducted on the test on L-moments. Overall, the test performs

very well for edge deletion when either the low or high degree nodes are affected for

networks with m ≥ 2, and the test also performs well for node deletion when either

the medium or high degree nodes are affected for networks with m ≥ 2 with size

k ≥ 9. For edge deletion, it seems that the test performance drops if the proportion

of deletion p is in the neighborhood of 0.2 when only the medium degree nodes are

affected, but the performance then improves as p increases. For node deletion, the

overall performance of the test increases gradually as a function of p, but it is very

apparent that the test is practically unusable for smaller networks when only the

high degree nodes are affected. This is attributable to the fact that there are only a

few number of nodes with high degree for smaller networks and if the proportion of

deletion p is small, then it is likely that none of the nodes are deleted at all. These

results could be explained when looking at the statistics on the deletion processes
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for the various conditions where although edge deletion seems to create some isolates

for almost all combinations of degree level, network size, and proportion of deletion,

node deletion seems to have only created some isolates on medium and high degree

on larger networks with high proportion of deletion. Both degradation processes

only affected medium and high degree level with some varying effect with respect to

number of components created, but in terms of the degree distribution, only isolates

would have caused a drastic change where essentially those proportion of the density

are taken out and redistributed thus changing the shape of the distribution. This

may explain why the test was more successful for edge deletion and not as much for

node deletion.

6.1 Conclusion

As previously discussed, many real world network possess the scale-free property

where the degree distribution follows a power law with varying values of β. There

is an important implication to the findings in this dissertation. If our results hold

and the the value of β is truly dependent on the m∗ parameter and is not β = 2

as proposed, then the degree distribution may be used to model any network that

is believed to be scale-free. One can then generate a proxy of the real network by

using the appropriate parameter m∗ of the Barabási-Albert model that is associated

with a given β for the given network size n. A direct application of this finding is

in Social Network Analysis where a study by Blaha and others [10] suggested that

the most appropriate technique selection for visualizing a network is dependent on

various factors such as the network model and the task that is to be performed on

the given network. Therefore, if a real network could be characterized to the closest

proxy model, then the most appropriate visualization technique that gives the best

insight to the structure of the network should be used. For example, if a network
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can be characterized by its exponent, β, then the visualization that works best for

the corresponding Barabási-Albert model is preferred. Additionally, the real network

could also be characterized using the Barabási-Albert model, and hypotheses could

be tested on whether or not the network is changing.

Although the real world network classification showed that only the sub-network

of two networks can be classified as Barabási-Albert networks, the result is useful

nonetheless. It is now possible, at least on the sub-network level, to simulate a network

having the same properties as the Barabási-Albert network using the Barabási-Albert

network itself. One can then compare the real network and the simulated network

through visual comparison or inspection by an analyst, as a form of turing test, to

see if the simulated network is a good representation of the real network. Since

the simulated network is based on the Barabási-Albert model itself, the two are

mathematically similar, so a human visual comparison will be able to complement

the similarity provided by the model. Further, being able to examine the structure of

the sub-networks implies a way to gain deeper understanding of the main structure

of the network without the periphery nodes. Although our test is a good way of

comparing the structure of the networks, there might be differences in other aspects

of the network, through its visual representation, that could still differentiate the

networks. It is now also possible to adopt the result obtained by Blaha and others

[10] to visually display the real network based on what is known about the Barabási-

Albert network that might give more insight to the real network. Such ability will

be very useful especially for the intelligence community where an analyst could gain

more insight on the network.

Additionally, the derived test can also be used in real world application to detect

possible synthetic networks that are fabricated using a linear preferential attachment

model. This idea is akin to the test for the Erdös-Rényi network as described by
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Wasserman and Faust [95], except now we are able to not only test whether or not

a given network is truly random as modeled by the Erdös-Rényi network, but also

whether or not it is an artificial network that was built on the preferential attachment

model. Although the motivation for the research was to find a method of linking real

world network to a model proxy so that knowledge of the model can be applied to the

network for various tasks such as network simulation, being able to detect whether or

not a given network is artificial is useful in application such as community detection.

Should it prove to be that real world scale-free networks are inherently different than

the Barabási-Albert network, then the proposed test can still be used to differentiate

whether or not an anonymous network is a real world network or an artificial pseudo-

random network of the Barabási-Albert model. In which case, the next step will be to

compare whether the method can distinguish between a real world scale-free network

and a synthetic scale-free network better than a human analyst. The approach can

also be applied to other types of network model with known degree distribution for

network characterization.

It is shown that edge deletion affects the network more so than node deletion with

respect to the number of isolates and components caused and to changes in clustering.

Thus, if the objective is to affect a network in such a way that it changes the network’s

characteristic, then it is suggested that the focus be placed on the connectors (i.e.

edges) within said network as oppose to the entities of the network (i.e. nodes). On

the opposite end, however, if the objective is to detect whether or not the network

has degraded, then the trivariate test for change detection using (λ2, τ3, τ4) is able to

detect the degradation caused by edge deletion with high power. Recall again that

degradation is defined as removal of nodes or edges within the network that changes

the structure of the network and its degree distribution.

Although the test on the Pareto distribution is specific to the Barabási-Albert
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network, the test on the L-moments as designed for monitoring network degradation,

on the other hand, is not constrained to that particular model since it is based on

the empirical L-moments of the network in question. Even though the Barabási-

Albert network is the sole focus of this research, the method can be applied to other

network models such as the ones listed in Section 2.1.4. However, in order to apply

the test to real world application, a method of characterizing a network in question

to a suitable model proxy is required and to our knowledge there are no formal test

of hypothesis for characterizing any of the other models that are listed. Once this is

established, then the properties associated with the model proxy such as the scale-free

and small-world properties can directly be linked to the real network in question and

the network can be monitored using the test on L-moments to detect if its structure

has degraded to the point that it loses its original properties.

Another advantage to the approach taken for the test on L-moments is that it is

also not restricted to the degree distribution of the network. As listed in Section 2.1.2,

there are other nodal measures available in the literature that we have not considered.

Thus, the same approach can be taken using the listed measures by characterizing the

networks using the L-moments from the empirical distribution of these other measures

within a given network model. These other measures capture different properties of

the network that degree distribution does not and may be able to give a different

insight into the the changes within the network. A comprehensive look into all of

the other network models and measures is necessary in order to accomplish the goal

of creating a network visualization tool that can assist in gaining insight for network

analysis which is the overarching motivation for this dissertation.
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Appendix A. Power of the Hypotheses Tests

Figure A.1. Power curve for the test on β for m∗ = 4. Note: Lighter shaded lines
indicates smaller k

Figure A.2. Power curve for the test on β for m∗ = 6. Note: Lighter shaded lines
indicates smaller k
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Table A.1. Power of the test on Pareto for m1 = m∗
√

(n−m∗)
n where δ = m1 −m∗. ε is

smallest |δ|.

m∗ = 1 k
δ 5 6 7 8 9 10 11 12 13 14 15
ε .057 .077 .080 .025 .012 .015 .020 .022 .019 .025 .013
.005 .076 .133 .280 .265 1 1 1 1 1 1 1
.01 .111 .253 .877 1 1 1 1 1 1 1 1
.02 .182 .901 1 1 1 1 1 1 1 1 1
.04 .689 1 1 1 1 1 1 1 1 1 1
.06 1 1 1 1 1 1 1 1 1 1 1
.08 1 1 1 1 1 1 1 1 1 1 1
.1 1 1 1 1 1 1 1 1 1 1 1
.2 1 1 1 1 1 1 1 1 1 1 1

m∗ = 2 k
δ 5 6 7 8 9 10 11 12 13 14 15
ε .064 .053 .053 .096 .076 .007 .010 .006 .008 .007 .004
.005 .076 .074 .105 .354 1 1 1 1 1 1 1
.01 .087 .100 .195 1 1 1 1 1 1 1 1
.02 .123 .180 .633 1 1 1 1 1 1 1 1
.04 .204 .654 1 1 1 1 1 1 1 1 1
.06 .416 1 1 1 1 1 1 1 1 1 1
.08 .809 1 1 1 1 1 1 1 1 1 1
.1 1 1 1 1 1 1 1 1 1 1 1
.2 1 1 1 1 1 1 1 1 1 1 1

m∗ = 4 k
δ 5 6 7 8 9 10 11 12 13 14 15
ε .062 .055 .067 .051 .034 .160 .184 .000 .002 .000 .000
.005 .069 .067 .094 .088 .154 1 1 1 1 1 1
.01 .075 .077 .126 .173 .545 1 1 1 1 1 1
.02 .087 .105 .235 .577 1 1 1 1 1 1 1
.04 .124 .187 .796 1 1 1 1 1 1 1 1
.06 .154 .365 1 1 1 1 1 1 1 1 1
.08 .211 .696 1 1 1 1 1 1 1 1 1
.1 .314 1 1 1 1 1 1 1 1 1 1
.2 1 1 1 1 1 1 1 1 1 1 1

m∗ = 6 k
δ 5 6 7 8 9 10 11 12 13 14 15
ε .058 .060 .052 .054 .041 .122 .144 .124 .001 .000 .000
.005 .062 .069 .066 .081 .103 .622 1 1 1 1 1
.01 .066 .077 .083 .128 .279 1 1 1 1 1 1
.02 .076 .095 .126 .291 1 1 1 1 1 1 1
.04 .092 .136 .297 1 1 1 1 1 1 1 1
.06 .121 .212 .651 1 1 1 1 1 1 1 1
.08 .138 .334 1 1 1 1 1 1 1 1 1
.1 .167 .505 1 1 1 1 1 1 1 1 1
.2 .563 1 1 1 1 1 1 1 1 1 1
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Table A.2. Power of the UIT on Pareto for m1 = m∗
√

(n−m∗)
n and β0 = 2.

δβ = .02
δm k

m∗ = 1 5 6 7 8 9

.01 .11 .25 .88 1 1

.02 .18 .90 1 1 1

.04 .69 1 1 1 1

.06 1 1 1 1 1

.08 1 1 1 1 1

.1 1 1 1 1 1

δβ = .16
k

5 6 7 8 9

.11 .25 .88 1 1

.18 .90 1 1 1

.67 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

δβ = .32
k

5 6 7 8 9

.27 .53 .88 1 1

.27 .90 1 1 1

.69 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

m∗ = 2

.01 .09 .10 .20 1 1

.02 .12 .18 .63 1 1

.04 .20 .65 1 1 1

.06 .42 1 1 1 1

.08 .81 1 1 1 1

.1 1 1 1 1 1

.09 .10 .20 1 1

.12 .18 .63 1 1

.20 .65 1 1 1

.42 1 1 1 1

.81 1 1 1 1
1 1 1 1 1

.27 .53 .88 1 1

.27 .53 .88 1 1

.27 .65 1 1 1

.42 1 1 1 1

.81 1 1 1 1
1 1 1 1 1

m∗ = 4

.01 .08 .08 .13 .17 .55

.02 .09 .11 .24 .58 1

.04 .12 .19 .80 1 1

.06 .15 .37 1 1 1

.08 .21 .67 1 1 1

.1 .31 1 1 1 1

.08 .09 .14 .25 .55

.09 .11 .24 .58 1

.12 .19 .80 1 1

.15 .37 1 1 1

.21 .67 1 1 1

.31 1 1 1 1

.27 .53 .88 1 1

.27 .53 .88 1 1

.27 .53 .88 1 1

.27 .53 1 1 1

.27 .67 1 1 1

.31 1 1 1 1

m∗ = 6

.01 .07 .08 .08 .13 .28

.02 .08 .10 .13 .29 1

.04 .09 .14 .30 1 1

.06 .12 .21 .65 1 1

.08 .14 .33 1 1 1

.1 .17 .51 1 1 1

.07 .09 .14 .25 .46

.08 .10 .14 .29 1

.09 .14 .30 1 1

.12 .21 .65 1 1

.14 .33 1 1 1

.17 .51 1 1 1

.27 .53 .88 1 1

.27 .53 .88 1 1

.27 .53 .88 1 1

.27 .53 .88 1 1

.27 .53 1 1 1

.27 .53 1 1 1
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Table A.3. Power of the UIT on Barabási-Albert for m1 = m∗ and β0 = 2.

δβ = .02
δm k

m∗ = 1 5 6 7 8 9

.01 .06 .06 .05 1 1

.02 .06 .06 1 1 1

.04 .06 1 1 1 1

.06 1 1 1 1 1

.08 1 1 1 1 1

.1 1 1 1 1 1

δβ = .10
k

5 6 7 8 9

.06 .10 .19 1 1

.06 .10 1 1 1

.06 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

δβ = .30
k

5 6 7 8 9

.85 .96 1 1 1

.85 .96 1 1 1

.85 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

m∗ = 2

.01 .05 .07 .06 .07 1

.02 .05 .07 .06 1 1

.04 .05 .07 1 1 1

.06 .05 1 1 1 1

.08 .05 1 1 1 1

.1 1 1 1 1 1

.17 .23 .40 .63 1

.17 .23 .40 1 1

.17 .23 1 1 1

.17 1 1 1 1

.17 1 1 1 1
1 1 1 1 1

.85 .96 1 1 1

.85 .96 1 1 1

.85 .96 1 1 1

.85 1 1 1 1

.85 1 1 1 1
1 1 1 1 1

m∗ = 4

.01 .07 .07 .08 .10 .14

.02 .07 .07 .08 .10 1

.04 .07 .07 .08 1 1

.06 .07 .07 1 1 1

.08 .07 .07 1 1 1

.1 .07 1 1 1 1

.45 .57 .77 .91 .99

.45 .57 .77 .91 1

.45 .57 .77 1 1

.45 .57 1 1 1

.45 .57 1 1 1

.45 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

m∗ = 6

.01 .07 .08 .11 .13 .20

.02 .07 .08 .11 .13 1

.04 .07 .08 .11 1 1

.06 .07 .08 .11 1 1

.08 .07 .08 1 1 1

.1 .07 .08 1 1 1

.79 .82 .92 .99 1

.79 .82 .92 .99 1

.79 .82 .92 1 1

.79 .82 .92 1 1

.79 .82 1 1 1

.79 .82 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
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Appendix B. Mean and Covariance Estimate of (τ3, τ4)

Table B.4. Mean and Covariance estimates for (τ3, τ4) based on bivariate normal as-
sumption.

m k µλ2 µτ3 µτ4 σλ2 στ3 στ4 σλ2,τ3 σλ2,τ4 στ3,τ4
1 5 7.15E-01 5.73E-01 2.68E-01 2.16E-03 7.24E-03 1.20E-02 4.06E-03 3.84E-03 8.52E-03

1 6 7.42E-01 5.88E-01 2.93E-01 1.23E-03 3.75E-03 6.19E-03 2.30E-03 2.10E-03 4.50E-03

1 7 7.60E-01 6.03E-01 3.17E-01 5.23E-04 1.54E-03 2.75E-03 9.97E-04 8.74E-04 1.93E-03

1 8 7.68E-01 6.08E-01 3.27E-01 2.86E-04 8.17E-04 1.47E-03 5.39E-04 4.70E-04 1.03E-03

1 9 7.72E-01 6.12E-01 3.33E-01 1.31E-04 3.61E-04 6.30E-04 2.39E-04 2.12E-04 4.46E-04

1 10 7.75E-01 6.14E-01 3.37E-01 6.59E-05 1.86E-04 3.48E-04 1.25E-04 1.08E-04 2.39E-04

1 11 7.76E-01 6.16E-01 3.39E-01 3.72E-05 1.04E-04 1.86E-04 7.06E-05 6.05E-05 1.31E-04

1 12 7.77E-01 6.16E-01 3.40E-01 1.83E-05 4.89E-05 8.44E-05 3.27E-05 2.91E-05 6.01E-05

1 13 7.77E-01 6.16E-01 3.41E-01 8.27E-06 2.23E-05 3.95E-05 1.50E-05 1.32E-05 2.78E-05

1 14 7.77E-01 6.16E-01 3.41E-01 4.27E-06 1.19E-05 2.20E-05 8.03E-06 6.91E-06 1.52E-05

1 15 7.77E-01 6.16E-01 3.41E-01 2.32E-06 6.20E-06 1.08E-05 4.13E-06 3.68E-06 7.65E-06

2 5 1.26E+00 4.79E-01 1.96E-01 6.07E-03 4.78E-03 6.99E-03 3.38E-03 4.88E-03 4.76E-03

2 6 1.35E+00 5.23E-01 2.56E-01 3.46E-03 2.34E-03 3.76E-03 2.08E-03 2.59E-03 2.55E-03

2 7 1.41E+00 5.53E-01 2.99E-01 1.74E-03 1.05E-03 1.76E-03 1.05E-03 1.24E-03 1.19E-03

2 8 1.44E+00 5.68E-01 3.23E-01 8.18E-04 4.98E-04 8.56E-04 5.42E-04 5.88E-04 5.81E-04

2 9 1.46E+00 5.78E-01 3.38E-01 4.24E-04 2.56E-04 4.70E-04 2.85E-04 3.01E-04 3.10E-04

2 10 1.47E+00 5.83E-01 3.47E-01 2.20E-04 1.34E-04 2.45E-04 1.52E-04 1.57E-04 1.62E-04

2 11 1.47E+00 5.86E-01 3.51E-01 1.11E-04 6.32E-05 1.15E-04 7.07E-05 7.65E-05 7.55E-05

2 12 1.48E+00 5.87E-01 3.53E-01 5.72E-05 3.39E-05 6.25E-05 3.86E-05 4.03E-05 4.12E-05

2 13 1.48E+00 5.88E-01 3.55E-01 2.80E-05 1.58E-05 2.91E-05 1.74E-05 1.92E-05 1.89E-05

2 14 1.48E+00 5.88E-01 3.55E-01 1.31E-05 8.19E-06 1.63E-05 9.24E-06 9.37E-06 1.04E-05

2 15 1.48E+00 5.89E-01 3.56E-01 6.43E-06 3.93E-06 7.49E-06 4.52E-06 4.60E-06 4.87E-06

3 5 1.69E+00 4.11E-01 1.43E-01 9.30E-03 3.59E-03 4.97E-03 2.52E-03 4.81E-03 3.39E-03

3 6 1.90E+00 4.84E-01 2.29E-01 5.26E-03 1.58E-03 2.62E-03 1.59E-03 2.41E-03 1.71E-03

3 7 2.03E+00 5.28E-01 2.86E-01 2.79E-03 7.46E-04 1.35E-03 8.80E-04 1.21E-03 8.60E-04

3 8 2.09E+00 5.53E-01 3.24E-01 1.42E-03 3.80E-04 7.17E-04 5.14E-04 6.24E-04 4.58E-04

3 9 2.12E+00 5.66E-01 3.45E-01 7.47E-04 2.00E-04 3.92E-04 2.89E-04 3.30E-04 2.49E-04

3 10 2.14E+00 5.74E-01 3.58E-01 3.88E-04 9.59E-05 1.80E-04 1.42E-04 1.67E-04 1.16E-04

3 11 2.15E+00 5.79E-01 3.65E-01 1.76E-04 4.31E-05 8.60E-05 6.18E-05 7.40E-05 5.32E-05

3 12 2.16E+00 5.81E-01 3.69E-01 9.02E-05 2.25E-05 4.23E-05 3.42E-05 3.89E-05 2.74E-05

3 13 2.16E+00 5.82E-01 3.71E-01 4.65E-05 1.17E-05 2.35E-05 1.75E-05 1.99E-05 1.47E-05

3 14 2.16E+00 5.83E-01 3.72E-01 2.34E-05 5.61E-06 1.10E-05 8.35E-06 9.76E-06 6.91E-06

3 15 2.16E+00 5.83E-01 3.73E-01 1.18E-05 2.86E-06 5.60E-06 4.30E-06 4.97E-06 3.53E-06

4 5 2.05E+00 3.55E-01 9.69E-02 1.26E-02 3.03E-03 3.38E-03 2.05E-03 4.93E-03 2.50E-03

4 6 2.40E+00 4.52E-01 1.98E-01 7.83E-03 1.42E-03 2.15E-03 1.63E-03 2.66E-03 1.47E-03

4 7 2.60E+00 5.08E-01 2.70E-01 3.76E-03 6.00E-04 1.11E-03 7.74E-04 1.17E-03 6.97E-04

4 8 2.72E+00 5.43E-01 3.20E-01 2.08E-03 3.14E-04 5.81E-04 5.45E-04 6.67E-04 3.77E-04

4 9 2.77E+00 5.60E-01 3.48E-01 1.01E-03 1.43E-04 2.73E-04 2.55E-04 3.10E-04 1.74E-04

4 10 2.81E+00 5.71E-01 3.64E-01 5.49E-04 7.63E-05 1.46E-04 1.44E-04 1.70E-04 9.34E-05

4 11 2.82E+00 5.76E-01 3.74E-01 2.87E-04 3.99E-05 8.08E-05 7.37E-05 8.73E-05 5.04E-05

4 12 2.83E+00 5.80E-01 3.79E-01 1.32E-04 1.93E-05 3.97E-05 3.69E-05 4.13E-05 2.48E-05

4 13 2.84E+00 5.81E-01 3.82E-01 7.24E-05 1.01E-05 1.99E-05 1.99E-05 2.25E-05 1.27E-05

4 14 2.84E+00 5.82E-01 3.83E-01 3.43E-05 4.53E-06 9.09E-06 8.66E-06 1.03E-05 5.64E-06

4 15 2.84E+00 5.83E-01 3.84E-01 1.74E-05 2.44E-06 4.97E-06 4.51E-06 5.30E-06 3.10E-06

130



www.manaraa.com

Table B.5. Mean and Covariance estimates for (τ3, τ4) based on bivariate normal as-
sumption.

m k µλ2 µτ3 µτ4 σλ2 στ3 στ4 σλ2,τ3 σλ2,τ4 στ3,τ4
5 5 2.33E+00 3.05E-01 5.81E-02 1.48E-02 2.45E-03 2.71E-03 1.01E-03 4.42E-03 1.85E-03

5 6 2.85E+00 4.22E-01 1.68E-01 9.48E-03 1.16E-03 1.65E-03 1.28E-03 2.53E-03 1.13E-03

5 7 3.15E+00 4.92E-01 2.54E-01 4.68E-03 4.81E-04 8.68E-04 7.03E-04 1.13E-03 5.47E-04

5 8 3.32E+00 5.33E-01 3.12E-01 2.93E-03 2.59E-04 4.72E-04 4.91E-04 6.85E-04 3.01E-04

5 9 3.42E+00 5.56E-01 3.46E-01 1.44E-03 1.33E-04 2.61E-04 2.69E-04 3.40E-04 1.64E-04

5 10 3.46E+00 5.69E-01 3.68E-01 7.73E-04 7.12E-05 1.33E-04 1.61E-04 1.91E-04 8.65E-05

5 11 3.49E+00 5.75E-01 3.79E-01 3.65E-04 3.10E-05 6.28E-05 6.69E-05 8.31E-05 3.89E-05

5 12 3.50E+00 5.79E-01 3.85E-01 1.81E-04 1.57E-05 3.07E-05 3.44E-05 4.23E-05 1.93E-05

5 13 3.51E+00 5.81E-01 3.89E-01 8.33E-05 7.85E-06 1.66E-05 1.69E-05 1.97E-05 1.02E-05

5 14 3.51E+00 5.82E-01 3.91E-01 4.88E-05 4.18E-06 8.28E-06 9.55E-06 1.14E-05 5.22E-06

5 15 3.51E+00 5.83E-01 3.92E-01 2.28E-05 2.03E-06 4.13E-06 4.51E-06 5.35E-06 2.57E-06

6 5 2.56E+00 2.57E-01 2.72E-02 1.74E-02 2.30E-03 2.07E-03 6.71E-04 4.56E-03 1.46E-03

6 6 3.26E+00 3.92E-01 1.37E-01 1.07E-02 1.01E-03 1.40E-03 1.11E-03 2.40E-03 9.74E-04

6 7 3.68E+00 4.77E-01 2.37E-01 5.97E-03 4.76E-04 7.78E-04 8.78E-04 1.29E-03 5.26E-04

6 8 3.91E+00 5.23E-01 3.02E-01 3.45E-03 2.43E-04 4.48E-04 5.40E-04 6.99E-04 2.91E-04

6 9 4.04E+00 5.51E-01 3.43E-01 1.79E-03 1.13E-04 2.01E-04 2.84E-04 3.52E-04 1.34E-04

6 10 4.11E+00 5.67E-01 3.68E-01 8.67E-04 5.68E-05 1.09E-04 1.39E-04 1.70E-04 7.00E-05

6 11 4.15E+00 5.75E-01 3.81E-01 4.16E-04 2.84E-05 5.88E-05 7.17E-05 8.18E-05 3.68E-05

6 12 4.17E+00 5.80E-01 3.89E-01 2.08E-04 1.36E-05 2.81E-05 3.40E-05 4.00E-05 1.75E-05

6 13 4.18E+00 5.82E-01 3.93E-01 1.16E-04 7.24E-06 1.42E-05 1.86E-05 2.23E-05 9.03E-06

6 14 4.18E+00 5.83E-01 3.96E-01 5.52E-05 3.46E-06 6.76E-06 9.03E-06 1.06E-05 4.35E-06

6 15 4.19E+00 5.84E-01 3.97E-01 3.02E-05 1.84E-06 3.89E-06 4.78E-06 5.66E-06 2.39E-06

7 5 2.73E+00 2.12E-01 -9.54E-04 1.90E-02 2.19E-03 1.81E-03 3.87E-04 4.67E-03 1.23E-03

7 6 3.63E+00 3.65E-01 1.12E-01 1.23E-02 9.26E-04 1.17E-03 1.01E-03 2.43E-03 8.29E-04

7 7 4.18E+00 4.61E-01 2.18E-01 7.39E-03 4.44E-04 6.91E-04 9.07E-04 1.37E-03 4.75E-04

7 8 4.50E+00 5.16E-01 2.93E-01 3.68E-03 1.83E-04 3.17E-04 4.19E-04 6.11E-04 2.07E-04

7 9 4.67E+00 5.47E-01 3.39E-01 2.00E-03 9.69E-05 1.83E-04 2.63E-04 3.31E-04 1.17E-04

7 10 4.76E+00 5.65E-01 3.67E-01 1.11E-03 4.80E-05 9.18E-05 1.31E-04 1.73E-04 5.80E-05

7 11 4.81E+00 5.75E-01 3.83E-01 5.40E-04 2.64E-05 5.24E-05 7.92E-05 9.02E-05 3.35E-05

7 12 4.83E+00 5.80E-01 3.92E-01 2.52E-04 1.09E-05 2.25E-05 2.97E-05 3.83E-05 1.38E-05

7 13 4.84E+00 5.83E-01 3.97E-01 1.32E-04 6.24E-06 1.26E-05 1.82E-05 2.14E-05 7.91E-06

7 14 4.85E+00 5.84E-01 3.99E-01 6.86E-05 3.16E-06 6.38E-06 9.96E-06 1.14E-05 4.00E-06

7 15 4.86E+00 5.85E-01 4.01E-01 3.55E-05 1.55E-06 3.15E-06 4.35E-06 5.52E-06 1.94E-06
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Appendix C. Statistics and Plots for Degradation Detection

Table C.6. Edges affected and edges deleted from edge deletion

m k Degree Level
Edges Affected

95% CI
Deleted 95% CI

(p = 0.01), (p = 0.5)

5 low (15, 22) (0, 0) (7, 11)
1 medium (0, 23) (0, 0) (0, 11)

high (6, 17) (0, 0) (3, 8)
14 low (9752, 9913) (97, 99) (4876, 4956)

medium (9752, 9913) (97, 99) (4876, 4956)
high (2854, 3322) (28, 33) (1426, 1661)

5 low (20, 34) (0, 0) (10, 17)
2 medium (0, 36) (0, 0) (0, 18)

high (10, 26) (0, 0) (5, 13)
14 low (14716, 15068) (147, 150) (7358, 1534)

medium (10041, 10605) (100, 106) (5020, 5302)
high (5868, 6464) (58, 64) (2934, 3232)

5 low (24, 42) (0, 0) (12, 21)
3 medium (0, 24) (0, 0) (0, 20)

high (13, 34) (0, 0) (6, 17)
14 low (17868, 18111) (178, 183) (8934, 9172)

medium (12772, 13540) (127, 135) (6386, 6770)
high (8952, 9662) (89, 96) (4476, 4831)

5 low (24, 48) (0, 0) (12, 24)
4 medium (0, 49) (0, 0) (0, 24)

high (15, 40) (0, 0) (7, 19)
14 low (20028, 20656) (200, 206) (10014, 10328)

medium (11652, 15780) (116, 157) (5826, 7890)
high (12057, 12884) (120, 128) (6028, 6442)

5 low (25, 55) (0, 0) (12, 27)
5 medium (0, 49) (0, 0) (0, 24)

high (17, 51) (0, 0) (8, 25)
14 low (21575, 22360) (215, 223) (4876, 4956)

medium (13244, 14322) (132, 143) (6622, 7161)
high (15165, 16125) (151, 161) (7582, 8062)

5 low (24, 60) (0, 0) (12, 30)
6 medium (0, 56) (0, 0) (0, 28)

high (19, 60) (0, 0) (9, 30)
14 low (22800, 23664) (228, 236) (11400, 11832)

medium (14640, 15904) (146, 159) (7320, 7952)
high (18283, 19327) (182, 193) (9141, 9663)

5 low (21, 56) (0, 0) (10, 28)
7 medium (0, 60) (0, 0) (0, 30)

high (21, 63) (0, 0) (10, 31)
14 low (23765, 24710) (237, 247) (11882, 12355)

medium (13310, 14690) (133, 146) (6655, 7345)
high (21415, 22489) (214, 224) (10707, 11244)
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Figure C.3. Clustering coefficients of networks after edge deletion on high degrees.
(Bars are 95% CI.)
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Figure C.4. Clustering coefficients of networks after edge deletion on high degrees.
(Bars are 95% CI.)
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Figure C.5. Clustering coefficients of networks after node deletion on low degrees.
(Bars are 95% CI.)
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Figure C.6. Clustering coefficients of networks after node deletion on medium degrees.
(Bars are 95% CI.)
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Table C.7. Nodes affected and edges deleted from node deletion

m k Degree Level
Nodes Affected

95% CI
Deleted 95% CI

(p = 0.01), (p = 0.5)

5 low (15, 22) (0, 0) (7, 11)
1 medium (0, 22) (0, 0) (0, 11)

high (1, 3) (0, 0) (0, 8)
14 low (9752, 9913) (97, 99) (4876, 4956)

medium (9752, 9913) (97, 99) (4876, 4956)
high (166, 207) (11, 47) (1362, 1709)

5 low (10, 17) (0, 0) (10, 16)
2 medium (0, 17) (0, 0) (0, 18)

high (1, 2) (0, 0) (0, 12)
14 low (7358, 7534) (146, 150) (7358, 7534)

medium (3347, 3535) (99, 105) (5019, 5301)
high (164, 187) (21, 113) (2749, 3410)

5 low (8, 14) (0, 0) (12, 21)
3 medium (0, 10) (0, 0) (0, 20)

high (1, 2) (0, 0) (0, 15)
14 low (5956, 6115) (177, 183) (8934, 9171)

medium (3193, 3385) (124, 134) (6384, 6768)
high (164, 179) (31, 162) (4159, 5117)

5 low (6, 12) (0, 0) (12, 24)
4 medium (0, 9) (0, 0) (0, 24)

high (1, 3) (0, 0) (0, 18)
14 low (5007, 5164) (200, 204) (10012, 10328)

medium (1942, 3156) (114, 155) (5826, 7890)
high (164, 176) (42, 221) (5556, 6834)

5 low (5, 11) (0, 0) (10, 25)
5 medium (0, 7) (0, 0) (0, 24)

high (1, 3) (0, 0) (0, 20)
14 low (4315, 4472) (215, 220) (10785, 11180)

medium (1892, 2046) (126, 140) (6622, 7161)
high (164, 173) (52, 303) (7054, 8532)

5 low (4, 10) (0, 0) (12, 30)
6 medium (0, 6) (0, 0) (0, 27)

high (1, 3) (0, 0) (0, 22)
14 low (3800, 3944) (228, 234) (11400, 11832)

medium (1830, 1988) (144, 152) (7320, 7952)
high (164, 172) (62, 332) (8440, 10320)

5 low (3, 8) (0, 0) (7, 28)
7 medium (0, 6) (0, 0) (0, 30)

high (1, 3) (0, 0) (0, 23)
14 low (3395, 3530) (231, 245) (11879, 12355)

medium (1331, 1469) (130, 140) (6650, 7340)
high (164, 171) (73, 367) (9938, 12020)
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Appendix D. Goodness of fit

Table D.8. Goodness of fit via -loglikelihood for all m and n

Shadings indicate groupings of overlapping CIs.
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Table D.9. Goodness of fit via MSE for all m and n

Shadings indicate groupings of overlapping CIs.
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